- 1. In the problems below, the coefficient matrix contains a parameter α . For both of these matrices, carry out the following steps.
 - (i) Determine the eigenvalues in terms of α .
 - (ii) Find the critical value or values of α where the qualitative nature of the phase portrait for the system changes.
 - (iii) Draw a phase portrait for a value of α slight below, and for another value slightly above, each critical value.
 - (iv) Draw a phase portrait when α is exactly the critical value.

(a)
$$\mathbf{x}' = \begin{bmatrix} \alpha & 1 \\ -1 & \alpha \end{bmatrix} \mathbf{x}$$
 (b) $\mathbf{x}' = \begin{bmatrix} -1 & \alpha \\ -1 & -1 \end{bmatrix} \mathbf{x}$

2. Find the general solution for each of the given systems and draw a phase portrait. Describe the behavior of the solutions as $t \to \infty$ and as $t \to -\infty$.

(a)
$$\mathbf{x}' = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \mathbf{x}$$
 (b) $\mathbf{x}' = \begin{bmatrix} -3/2 & 1 \\ -1/4 & -1/2 \end{bmatrix} \mathbf{x}$ (c) $\mathbf{x}' = \begin{bmatrix} -1 & -1/2 \\ 2 & -3 \end{bmatrix} \mathbf{x}$.

- 3. Find the Laplace transform of the following functions by using a table and/or basic properties. You do not need to compute any intergrals.
 - (a) f(t) = -2(b) $f(t) = e^{-2t}$ (c) $f(t) = \sin 3t$ (d) $f(t) = te^{-3t}$ (e) $f(t) = e^{2t} \cos 2t$
- 4. Sketch each of the following piecewise functions and compute their Laplace transforms.

(a)
$$f(t) = \begin{cases} 0, & 0 \le t < 4\\ 5, & t \ge 4 \end{cases}$$
 (b) $f(t) = \begin{cases} t, & 0 \le t < 3\\ 3, & t \ge 3 \end{cases}$

5. Engineers frequently use the *Heavyside function*, defined by

$$H(t) = \begin{cases} 0, & t < 0\\ 1, & t \ge 0 \end{cases}$$

to emulate turning on a switch at a certain instance in time. Sketch the graph of the function $x(t) = e^{0.2t}$ and compute its Laplace transform, X(s). On a different set of axes, sketch the graph of

$$y(t) = H(t-3)e^{0.2}$$

and calculate its Laplace transform, Y(s). How do X(s) and Y(s) differ? What do you think the Laplace transform of $H(t-c)e^{0.2t}$ is, where c is an arbitrary positive constant?

- 6. Transform the given initial value problem into an algebraic equation involving $Y(s) := \mathcal{L}(y)$, and solve for Y(s).
 - (a) $y'' + y = \sin 4t$, y(0) = 0, y'(0) = 1
 - (b) $y'' + y' + 2y = \cos 2t + \sin 3t$, y(0) = -1, y'(0) = 1
 - (c) $y' + y = e^{-t} \sin 3t$, y(0) = 0.
- 7. Find the inverse Laplace transform of the following functions.

(a)
$$Y(s) = \frac{2}{3-5s}$$

(b) $Y(s) = \frac{1}{s^2+4}$
(c) $Y(s) = \frac{5s}{s^2+9}$
(d) $Y(s) = \frac{3}{s^2}$
(e) $Y(s) = \frac{2-5s}{s^2+9}$
(f) $Y(s) = \frac{s}{(s+2)^2+4}$
(g) $Y(s) = \frac{3s+2}{s^2+4s+29}$
(h) $Y(s) = \frac{2s-2}{(s-4)(s+2)}$
(i) $Y(s) = \frac{3s^2+s+1}{(s-2)(s^2+1)}$

- 8. Use the Laplace transform to solve the following initial value problems.
 - (a) $y' 4y = e^{-2t}t^2$, y(0) = 1(b) $y'' - 9y = -2e^t$, y(0) = 0, y'(0) = 1.
- 9. Find the Laplace transform of the given functions.
 - (a) 3H(t-2)(b) (t-2)H(t-2)(c) $e^{2(t-1)}H(t-1)$ (d) $H(t-\pi/4)\sin 3(t-\pi/4)$ (e) $t^2H(t-1)$ (f) $e^{-t}H(t-2)$
- 10. In this exercise, you will examine the effect of shifts in the time domain on the Laplace transform (graphically).
 - (a) Sketch the graph of $f(t) = \sin t$ in the time domain. Find the Laplace transform $F(s) = \mathcal{L}{f(t)}(s)$. Sketch the graph of F in the s-domain on the interval [0, 2].
 - (b) Sketch the graph of $g(t) = H(t-1)\sin(t-1)$ in the time domain. Find the Laplace transform $G(s) = \mathcal{L}\{g(t)\}(s)$. Sketch the graph of G in the s-domain on the interval [0, 2] on the same axes used to sketch the graph of F.
 - (c) Repeat the directions in part (b) for $g(t) = H(t-2)\sin(t-2)$. Explain why engineers like to say that "a shift in the time domain leads to an attenuation (scaling) in the s-domain."