1. Use the Heaviside function to concisely write each piecewise function.

(a)
$$f(t) = \begin{cases} 5 & 2 \le t < 4; \\ 0 & \text{otherwise} \end{cases}$$
 (c) $f(t) = \begin{cases} 0 & t < 0; \\ t^2 & 0 \le t < 2 \\ 4 & t \ge 2 \end{cases}$
(b) $f(t) = \begin{cases} 0 & t < 0; \\ t & 0 \le t < 3 \\ 4 & t \ge 3 \end{cases}$

2. Find the inverse Laplace transform of each function. Create a piecewise definition for your solution that does not use the Heavyside function.

(a)
$$F(s) = \frac{e^{-2s}}{s+3}$$
 (b) $F(s) = \frac{1-e^{-s}}{s^2}$ (c) $F(s) = \frac{e^{-s}}{s^2+4}$

- 3. For each initial value problem, sketch the forcing term, and then solve for y(t). Write your solution as a piecewise function (i.e., not using the Heavysie function). Recall that the function $H_{ab}(t) = H(t-a) H(t-b)$ is the interval function.
 - (a) $y'' + 4y = H_{01}(t), \quad y(0) = 0, \quad y'(0) = 0$
 - (b) $y'' + 4y = t H_{01}(t), \quad y(0) = 0, \quad y'(0) = 0$
- 4. Define the function $\delta_p^{\epsilon}(t) = \frac{1}{\epsilon} \left(H_p(t) H_{p+\epsilon}(t) \right)$.
 - (a) Sketch $\delta_p^{\epsilon}(t)$, and show that its Laplace $\delta_p^{\epsilon}(t)$ is

$$\mathcal{L}\left\{\delta_{p}^{\epsilon}(t)\right\} = e^{-sp} \, \frac{1 - e^{-s\epsilon}}{s\epsilon}$$

- (b) Use l'Hôpital's rule to take the limit of the result in part (a) as $\epsilon \to 0$. How does this result agree with the fact that $\mathcal{L}{\delta_p(t)} = e^{-sp}$?
- 5. Engineers likes to that the "derivative of a unit step is a unit impulse". In this problem you will further explore this idea. Define the function

$$H_p^{\epsilon}(t) = \begin{cases} 0, & 0 \le t$$

- (a) Sketch the graph of $H_p^{\epsilon}(t)$.
- (b) Without being too precise about things, we could argue that $H_p^{\epsilon}(t) \to H_p(t)$ as $\epsilon \to 0$, where $H_p(t) = H(t-p)$. Sketch the graph of the derivative of $H_p^{\epsilon}(t)$.
- (c) Compare the graph of $\delta_p^{\epsilon}(t)$ to Part (b). Argue (graphically) that $H'_p(t) = \delta_p(t)$.
- (d) Use a Laplace transform to solve the following initial value problem:

$$y' = \delta_p(t), \qquad y(0) = 0.$$

Why does this also suggest (but this time, algebraically) that $H'_p(t) = \delta_p(t)$?

6. Solve the following initial value problems.

(a)
$$y'' + 4y = \delta(t)$$
, $y(0) = 0$, $y'(0) = 0$
(b) $y'' - 4y' - 5y = \delta(t)$, $y(0) = 0$, $y'(0) = 0$

- 7. Compute the following convolutions.
 - (a) $e^{at} * e^{bt}$, $a \neq b$ (b) $e^{at} * e^{at}$, (c) $t * e^t$.
- 8. Compute the following inverse Laplace transforms *without* using partial fraction decomposition. Use convolutions for Parts (b)–(d) instead.

(a)
$$\mathcal{L}^{-1}\left(\frac{3s-5}{s-1}\right)$$
 (c) $\mathcal{L}^{-1}\left(\frac{s}{(s-1)(s^2+1)}\right)$
(b) $\mathcal{L}^{-1}\left(\frac{1}{s(s+1)}\right)$ (d) $\mathcal{L}^{-1}\left(\frac{s^2}{(s^2+9)^2}\right)$.

- 9. Find the Fourier series of the following functions without computing any integrals.
 - (a) $f(x) = 2 3\sin 4x + 5\cos 6x$,
 - (b) $f(x) = \sin^2 x$ [*Hint*: Use a standard trig identity.]
- 10. The function

$$f(x) = \begin{cases} 0 & -\pi \le x < -\pi/2 \\ 1 & -\pi/2 \le x < \pi/2 \\ 0 & \pi/2 \le x \le \pi \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function on $[-5\pi, 5\pi]$ and compute its Fourier series.

11. The function

$$f(x) = \begin{cases} 0 & -\pi \le x < 0\\ x & 0 \le x \le \pi \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function on $[-5\pi, 5\pi]$ and compute its Fourier series.