1. Consider the 2π -periodic function defined by

$$f(x) = \begin{cases} x^2 & -\pi \le x < \pi, \\ f(x - 2k\pi), & -\pi + 2k\pi \le x < \pi + 2k\pi \end{cases}$$

- (a) Sketch the graph of f(x) on $[-5\pi, 5\pi]$.
- (b) Compute the Fourier series of f(x).
- (c) Solve the differential equation $x''(t) + \omega_0^2 x(t) = f(t)$. Look for a particular solution of the form

$$x_p(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt$$

[*Hint*: Can you deduce right away that some of the coefficients will be zero?]

- 2. Determine which of the following functions are even, which are odd, and which are neither:
 - (a) $f(x) = x^3 + 3x$ (b) $f(x) = x^2 + |x|$ (c) f(x) = 1/x(d) $f(x) = e^x$ (e) $f(x) = \frac{1}{2}(e^x + e^{-x})$ (f) $f(x) = \frac{1}{2}(e^x - e^{-x})$
- 3. Suppose that f is a function defined on \mathbb{R} (not necessarily periodic). Show that there is an odd function f_{odd} and an even function f_{even} such that $f(x) = f_{\text{odd}} + f_{\text{even}}$. [*Hint*: As a guiding example, suppose $f(x) = e^{ix}$, and consider $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$ and $i \sin x = \frac{1}{2}(e^{ix} e^{-ix})$.]
- 4. Express the *y*-intercept of $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ in terms of the a_n 's and b_n 's. (*Hint*: It's not a_0 or $a_0/2!$)
- 5. Consider the 2π -periodic function $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$. Write the Fourier series for the following functions:
 - (a) The reflection of f(x) across the y-axis;
 - (b) The reflection of f(x) across the x-axis;
 - (c) The reflection of f(x) across the origin.
- 6. Consider the function defined on the interval $[0, \pi]$:

$$f(x) = x(\pi - x)$$

- (a) Sketch the even extension of this function and find its Fourier cosine series.
- (b) Sketch the odd extension of this function and find its Fourier sine series.

- 7. (a) The Fourier series of an odd function consists only of sine-terms. What additional symmetry conditions on f will imply that the sine coefficients with even indices will be zero (i.e., each $b_{2n} = 0$)? Give an example of a non-zero function satisfying this additional condition.
 - (b) What symmetry conditions on f will imply that the sine coefficients with odd indices will be zero (i.e., each $b_{2n+1} = 0$)? Give an example of a non-zero function satisfying this additional condition.
 - (c) Sketch the graph of a non-zero even function, such that $a_{2n} = 0$ for all n.
 - (d) Sketch the graph of a non-zero even function, such that $a_{2n+1} = 0$ for all n.
- 8. Compute the complex Fourier series for the function defined on the interval $[-\pi,\pi]$:

$$f(x) = \begin{cases} -1, & -\pi \le x < 0\\ 5, & 0 \le x \le \pi. \end{cases}$$

Use the c_n 's to find the coefficients of the real Fourier series [*Hint: Use* $a_n = c_n + c_{-n}$, and $b_n = i(c_n - c_{-n})$.]

9. On a previous problem, you derived the real Fourier series for the function defined by

$$f(x) = x^2$$
 for $-\pi < x \le \pi$.

and extended to be periodic of period 2π .

- (a) Compute the complex Fourier coefficients from the real coefficients using the identities $c_n = (a_n ib_n)/2$ and $c_{-n} = (a_n + ib_n)/2$.
- (b) Use the real form of the Fourier series and *Parseval's identity* to compute $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

10. Compute $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$. *Hint*: Compute the Fourier series for f(x) = |x|, and then observe that $f(\pi) = \pi$. (Parseval's identity not needed!)