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1. Let u(x, t) be the temperature of a bar of length 10 that is fully insulated so that no heat
can enter or leave. Suppose that initially, the temperature is increasing linearly from 70◦

at one endpoint to 80◦ at the other endpoint.

(a) Sketch the initial heat distribution on the bar and express it as a function of x.

(b) Write down an initial/boundary value problem to which u(x, t) is a solution. (Let
the constant from the heat equation be c2.)

(c) What will the steady-state solution be?

2. Let u(x, t) be the temperature of a bar of length 10 that is fully insulated at its right
endpoint but uninsulated at its left endpoint. Suppose the bar is sitting in a 70◦ room and
that initially, the temperature of the bar increases linearly from 70◦ at the left endpoint
to 80◦ at the other end. Finally, suppose the interior of the bar is poorly insulated, so
heat can escape.

(a) Suppose that heat escapes at a constant rate of 1◦ per hour. Write an initial/boundary
value problem for u(x, t) that could model this situation.

(b) A more realistic situation would be for heat to escape not at a constant rate, but
at a rate proportional to the difference between the temperature of the bar and
the ambient temperature of the room. Write an initial/boundary value problem for
u(x, t) that could model this situation. What is the steady-state solution and why?

3. Consider the following PDE:

ut = c2uxx, u(0, t) = 0, ux(π, t) + γ u(π, t) = 0, u(x, 0) = h(x) ,

where γ is a constant, and h(x) and arbitrary function on [0, π].

(a) Describe a physical situation that this models. Be sure to describe the impact of the
initial condition, both boundary conditions, and the constant γ.

(b) What is the steady-state solution and why? (Use your physical intuition).

4. In this problem, we will find all solutions to the boundary value problem (BVP) y′′ = λy,
y′(0) = y′(π) = 0, where λ is a constant. These are called Neumann boundary conditions.

(a) First, suppose that λ = 0. That is, solve y′′ = 0; y′(0) = y′(π) = 0.

(b) Next, suppose λ = ω2 ≥ 0. That is, solve the boundary value problem y′′ = ω2y;
y′(0) = y′(π) = 0. Use hyperbolic sine and cosine functions for your general solution
instead of exponentials. (It will make things easier!)

(c) Finally, suppose λ = −ω2 < 0. That is, solve y′′ = −ω2y; y′(0) = y′(π) = 0.

(d) Using your results from parts (a)–(c), describe all solutions to the boundary value
problem y′′ = λy; y′(0) = y′(π) = 0. What are the possibile values for λ?
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5. Solve the boundary value problem that has mixed boundary conditions :

y′′ = λy, y(0) = y′(π) = 0 .

That is, find all possible values of λ that lead to a nonzero solution, and find those
solutions.

6. We will solve for the function u(x, t), defined for 0 ≤ x ≤ π and t ≥ 0, which satisfies the
following conditions:

ut = c2uxx, u(0, t) = u(π, t) = 0, u(x, 0) = 5 sinx+ 3 sin 2x.

(a) Briefly describe and sketch a physical situation which this models. Be sure to explain
the effect of both boundary conditions (called Dirichlet boundary conditions) and
the initial condition.

(b) Assume that u(x, t) = f(x)g(t). Find ut and uxx. Also, determine the boundary
conditions for f(x) (at x = 0 and x = π) from the boundary conditions for u(x, t).

(c) Plug u = fg back into the PDE and separate variables by dividing both sides of the
equation by c2fg. Set this equal to a constant λ and write down two ODEs: one for
g(t) and a BVP for f(x).

(d) Recall from HW 3 that the BVP for f has a solution fn(x) for each λ = −n2 where
n = 1, 2, . . . , and that solution is fn(x) = bn sinnx. Now, given such λ = −n2, solve
the ODE for g. Call this solution gn(t).

(e) Using your solution to Part (d) and the principle of superposition, find the general
solution to the PDE.

(f) Solve the remaining initial value problem, i.e., find the particular solution u(x, t)
that additionally satisfies u(x, 0) = 5 sinx+ 3 sin 2x. [Your solution should be a sum
of only two terms – and not have a

∑
in it!]

(g) What is the steady-state solution, i.e., uss(x) := lim
t→∞

u(x, t)?

7. Consider a similar situation as the previous problem but with inhomogeneous boundary
conditions.

ut = c2uxx, u(0, t) = 30, u(π, t) = 100, u(x, 0) = 30 + 70
π
x+ 5 sinx+ 3 sin 2x.

(a) Describe and sketch a physical situation that this models. Be sure to describe the
impact of both boundary conditions and the initial condition.

(b) Use your physical intuition to determine what the steady-state solution uss(x) is.

(c) Define v(x, t) = u(x, t) − uss(x), where uss(x) is your solution to Part (b). Rewrite
the PDE and the initial and boundary conditions in terms of v instead of u. The
resulting PDE is homogeneous because v(x, t) = 0 is a solution.

(d) Write down the solution to this PDE by adding the steady-state solution to the
solution of the related homogeneous problem (which you’ve already solved!).
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8. Consider the following initial/boundary value problem for the heat equation:

ut = c2uxx, u(0, t) = 0, ux(π, t) = 0, u(x, 0) = 3 sin 5x
2
.

(a) Describe (and sketch) a physical situation that this models. Be sure to describe the
impact of both boundary conditions and the initial condition.

(b) Assume there is a solution of the form u(x, t) = f(x)g(t). Find ut, ux, and uxx. Also,
determine the boundary conditions for f(x) (at x = 0 and x = π) from the mixed
boundary conditions for u(x, t).

(c) Plug u = fg back into the PDE and separate variables by dividing both sides of the
equation by c2fg. Set this equal to a constant λ and write down two ODEs: one for
g(t), and a BVP for f(x).

(d) Write down the solution to the BVP for f (see Problem 5) and to the ODE for g.
There should be one for each n = 0, 1, 2, . . . .

(e) Write down the general solution to the PDE.

(f) Find the particular solution u(x, t) that additionally satisfies the initial condition
u(x, 0) = 3 sin(5x/2). [Again, it should not contain a

∑
!]

(g) What is the steady-state solution?

9. Consider the heat equation with periodic boundary conditions :

ut = c2uθθ, u(θ + 2π, t) = u(θ, t), u(θ, 0) = 2 + 4 sin 3θ − cos 5θ.

(a) Describe and sketch a situation that this models.

(b) Assume there is a solution of the form u(θ, t) = f(θ)g(t). Find ut and uθθ. Use the
periodic boundary conditions for u(θ, t) to derive similar periodic boundary condi-
tions for f(θ).

(c) Plug u = fg back into the PDE and separate variables by dividing both sides of the
equation by c2fg. Set this equal to a constant λ and write down two ODEs: one for
g(t), and a “periodic” BVP for f(θ).

(d) Solve for g(t), f(θ), and λ. [Note: You won’t be able to conclude that a = 0 or b = 0
– so unlike before, they’ll both stick around.]

(e) Find the general solution of the boundary value problem. As before, it will be a
superposition (infinite sum) of solutions un(θ, t) = fn(θ)gn(t).

(f) Find the particular solution to the initial value problem that satisfies the initial
condition u(θ, 0) = 2 + 4 sin 3θ − cos 5θ.

(g) What is the steady-state solution? Give a mathematical and intuitive (physical)
justification for this.
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