- 1. Let u(x,t) be the temperature of a bar of length 10 that is fully insulated so that no heat can enter or leave. Suppose that initially, the temperature is increasing linearly from 70° at one endpoint to 80° at the other endpoint.
 - (a) Sketch the initial heat distribution on the bar and express it as a function of x.
 - (b) Write down an initial/boundary value problem to which u(x,t) is a solution. (Let the constant from the heat equation be c^2 .)
 - (c) What will the steady-state solution be?
- 2. Let u(x,t) be the temperature of a bar of length 10 that is fully insulated at its right endpoint but uninsulated at its left endpoint. Suppose the bar is sitting in a 70° room and that initially, the temperature of the bar increases linearly from 70° at the left endpoint to 80° at the other end. Finally, suppose the interior of the bar is poorly insulated, so heat can escape.
 - (a) Suppose that heat escapes at a constant rate of 1° per hour. Write an initial/boundary value problem for u(x,t) that could model this situation.
 - (b) A more realistic situation would be for heat to escape not at a constant rate, but at a rate proportional to the *difference* between the temperature of the bar and the ambient temperature of the room. Write an initial/boundary value problem for u(x,t) that could model this situation. What is the steady-state solution and why?
- 3. Consider the following PDE:

$$u_t = c^2 u_{xx}, \qquad u(0,t) = 0, \quad u_x(\pi,t) + \gamma u(\pi,t) = 0, \qquad u(x,0) = h(x),$$

where γ is a constant, and h(x) and arbitrary function on $[0, \pi]$.

- (a) Describe a physical situation that this models. Be sure to describe the impact of the initial condition, both boundary conditions, and the constant γ .
- (b) What is the steady-state solution and why? (Use your physical intuition).
- 4. In this problem, we will find all solutions to the *boundary value problem* (BVP) $y'' = \lambda y$, $y'(0) = y'(\pi) = 0$, where λ is a constant. These are called *Neumann* boundary conditions.
 - (a) First, suppose that $\lambda = 0$. That is, solve y'' = 0; $y'(0) = y'(\pi) = 0$.
 - (b) Next, suppose $\lambda = \omega^2 \ge 0$. That is, solve the boundary value problem $y'' = \omega^2 y$; $y'(0) = y'(\pi) = 0$. Use hyperbolic sine and cosine functions for your general solution instead of exponentials. (It will make things easier!)
 - (c) Finally, suppose $\lambda = -\omega^2 < 0$. That is, solve $y'' = -\omega^2 y$; $y'(0) = y'(\pi) = 0$.
 - (d) Using your results from parts (a)–(c), describe all solutions to the boundary value problem $y'' = \lambda y$; $y'(0) = y'(\pi) = 0$. What are the possibile values for λ ?

5. Solve the boundary value problem that has mixed boundary conditions:

$$y'' = \lambda y, \qquad y(0) = y'(\pi) = 0.$$

That is, find all possible values of λ that lead to a nonzero solution, and find those solutions.

6. We will solve for the function u(x, t), defined for $0 \le x \le \pi$ and $t \ge 0$, which satisfies the following conditions:

$$u_t = c^2 u_{xx}, \qquad u(0,t) = u(\pi,t) = 0, \qquad u(x,0) = 5\sin x + 3\sin 2x.$$

- (a) Briefly describe and sketch a physical situation which this models. Be sure to explain the effect of both boundary conditions (called *Dirichlet* boundary conditions) and the initial condition.
- (b) Assume that u(x,t) = f(x)g(t). Find u_t and u_{xx} . Also, determine the boundary conditions for f(x) (at x = 0 and $x = \pi$) from the boundary conditions for u(x,t).
- (c) Plug u = fg back into the PDE and separate variables by dividing both sides of the equation by $c^2 fg$. Set this equal to a constant λ and write down two ODEs: one for g(t) and a BVP for f(x).
- (d) Recall from HW 3 that the BVP for f has a solution $f_n(x)$ for each $\lambda = -n^2$ where n = 1, 2, ..., and that solution is $f_n(x) = b_n \sin nx$. Now, given such $\lambda = -n^2$, solve the ODE for g. Call this solution $g_n(t)$.
- (e) Using your solution to Part (d) and the principle of superposition, find the general solution to the PDE.
- (f) Solve the remaining *initial value problem*, i.e., find the particular solution u(x,t) that additionally satisfies $u(x,0) = 5 \sin x + 3 \sin 2x$. [Your solution should be a sum of only two terms and *not* have a \sum in it!]
- (g) What is the steady-state solution, i.e., $u_{ss}(x) := \lim_{t \to \infty} u(x, t)$?
- 7. Consider a similar situation as the previous problem but with *inhomogeneous* boundary conditions.

$$u_t = c^2 u_{xx},$$
 $u(0,t) = 30,$ $u(\pi,t) = 100,$ $u(x,0) = 30 + \frac{70}{\pi}x + 5\sin x + 3\sin 2x.$

- (a) Describe and sketch a physical situation that this models. Be sure to describe the impact of *both* boundary conditions and the initial condition.
- (b) Use your physical intuition to determine what the steady-state solution $u_{ss}(x)$ is.
- (c) Define $v(x,t) = u(x,t) u_{ss}(x)$, where $u_{ss}(x)$ is your solution to Part (b). Rewrite the PDE and the initial and boundary conditions in terms of v instead of u. The resulting PDE is *homogeneous* because v(x,t) = 0 is a solution.
- (d) Write down the solution to this PDE by adding the steady-state solution to the solution of the related homogeneous problem (which you've already solved!).

8. Consider the following initial/boundary value problem for the heat equation:

$$u_t = c^2 u_{xx}, \qquad u(0,t) = 0, \quad u_x(\pi,t) = 0, \qquad u(x,0) = 3\sin\frac{5x}{2}.$$

- (a) Describe (and sketch) a physical situation that this models. Be sure to describe the impact of *both* boundary conditions and the initial condition.
- (b) Assume there is a solution of the form u(x,t) = f(x)g(t). Find u_t , u_x , and u_{xx} . Also, determine the boundary conditions for f(x) (at x = 0 and $x = \pi$) from the *mixed* boundary conditions for u(x,t).
- (c) Plug u = fg back into the PDE and separate variables by dividing both sides of the equation by $c^2 fg$. Set this equal to a constant λ and write down two ODEs: one for g(t), and a BVP for f(x).
- (d) Write down the solution to the BVP for f (see Problem 5) and to the ODE for g. There should be one for each n = 0, 1, 2, ...
- (e) Write down the general solution to the PDE.
- (f) Find the particular solution u(x,t) that additionally satisfies the initial condition $u(x,0) = 3\sin(5x/2)$. [Again, it should not contain a $\sum !$]
- (g) What is the steady-state solution?
- 9. Consider the heat equation with *periodic boundary conditions*:

$$u_t = c^2 u_{\theta\theta}, \qquad u(\theta + 2\pi, t) = u(\theta, t), \qquad u(\theta, 0) = 2 + 4\sin 3\theta - \cos 5\theta.$$

- (a) Describe and sketch a situation that this models.
- (b) Assume there is a solution of the form $u(\theta, t) = f(\theta)g(t)$. Find u_t and $u_{\theta\theta}$. Use the periodic boundary conditions for $u(\theta, t)$ to derive similar periodic boundary conditions for $f(\theta)$.
- (c) Plug u = fg back into the PDE and separate variables by dividing both sides of the equation by $c^2 fg$. Set this equal to a constant λ and write down two ODEs: one for g(t), and a "periodic" BVP for $f(\theta)$.
- (d) Solve for g(t), $f(\theta)$, and λ . [Note: You won't be able to conclude that a = 0 or b = 0- so unlike before, they'll both stick around.]
- (e) Find the general solution of the boundary value problem. As before, it will be a superposition (infinite sum) of solutions $u_n(\theta, t) = f_n(\theta)g_n(t)$.
- (f) Find the particular solution to the initial value problem that satisfies the initial condition $u(\theta, 0) = 2 + 4 \sin 3\theta \cos 5\theta$.
- (g) What is the steady-state solution? Give a mathematical *and* intuitive (physical) justification for this.