- 1. Let $f \in \mathcal{B}[a,b]$, and suppose that \mathcal{P} and \mathcal{P}^* are partitions of [a,b] with $\mathcal{P}^* \supset \mathcal{P}$. Prove that $\mathcal{U}(\mathcal{P}^*,f) \leq \mathcal{U}(\mathcal{P},f)$.
- 2. The method used in Example 6.1.6 (d) can be summarized as the following theorem: Let $f \in \mathcal{B}[a,b]$ and suppose there exists a sequence $\{\mathcal{P}_n\}_{n=1}^{\infty}$ of partitions of [a,b] such that

$$\lim_{n\to\infty} \mathcal{L}(\mathcal{P}_n, f) = \lim_{n\to\infty} \mathcal{U}(\mathcal{P}_n, f) = L \in \mathbb{R}.$$

Then $f \in \mathcal{R}[a,b]$ and $\int_a^b f = L$. Prove this.

- 3. Use the above theorem to compute $\int_a^b x \, dx$.
- 4. For each of the given functions, check the Riemann integrability and evaluate the Riemann integral on the specificed interval.

(a)
$$f(x) =\begin{cases} -1, & x \in [0,1) \\ 2, & x \in [1,2] \end{cases}$$
 on $[0,2]$. (b) $f(x) = 2x + 1$ on $[0,1]$.

- 5. Let $f(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap [0, 1] \\ x, & x \in \mathbb{Q}^c \cap [0, 1]. \end{cases}$ Compute $\underline{\int_0^1} f$ and determine if $f \in \mathcal{R}[0, 1]$.
- 6. Let $f, g \in \mathcal{B}[a, b]$ and $c \in \mathbb{R}$.
 - (a) Prove that $\underline{\int_a^b} f + \underline{\int_a^b} g \leq \underline{\int_a^b} (f+g)$, and find an example that satisfies

$$\underline{\int_a^b} f + \underline{\int_a^b} g < \underline{\int_a^b} (f+g) = \overline{\int_a^b} (f+g) < \overline{\int_a^b} f + \overline{\int_a^b} g.$$

(b) Prove
$$\overline{\int_a^b}(cf) = \begin{cases} c\overline{\int_a^b}f & \text{if } c \ge 0, \\ c\underline{\int_a^b}f & \text{if } c < 0, \end{cases} \qquad \underline{\int_a^b}(cf) = \begin{cases} c\underline{\int_a^b}f & \text{if } c \ge 0, \\ c\overline{\int_a^b}f & \text{if } c < 0, \end{cases}$$

(c) Prove that if
$$f \geq g$$
, then $\underline{\int_a^b} f \geq \underline{\int_a^b} g$ and $\overline{\int_a^b} f \geq \overline{\int_a^b} g$.

(d) Prove
$$\left|\overline{\int_a^b}f\right| \leq \overline{\int_a^b}|f|$$
 and $\left|\underline{\int_a^b}f\right| \leq \overline{\int_a^b}|f|$. Find an example s.t. $\left|\underline{\int_a^b}f\right| \leq \underline{\int_a^b}|f|$.

- 7. Prove the following for $f \geq 0$:
 - (a) If $f \in \mathcal{C}[0,1]$, then $\int_0^1 f = 0$ implies f = 0.
 - (b) If we remove the continuity condition, then (a) need not hold.
 - (c) If $f \in \mathcal{R}[0,1]$, then f(x) = 0 for all $x \in \mathbb{Q} \cap [0,1]$ implies $\int_0^1 f = 0$.
- 8. Let $0 < f \in \mathcal{R}[0,1]$. Prove or disprove the following:

(a)
$$\int_0^1 f > 0$$
, (b) $\frac{1}{f} \in \mathcal{R}[0, 1]$.

9. Find a function $f \in \mathcal{B}[0,1]$ for which $f^2 \in \mathcal{R}[0,1]$ but $f \notin \mathcal{R}[0,1]$.