- 1. Use the fundamental theorem of calculus to evaluate $\int_0^1 x \ln x \, dx$.
- 2. Find the following integrals. They may or may not exist depending on $p \in \mathbb{R}$.

(a)
$$\int_0^1 x^p \, dx$$
, (b) $\int_1^\infty x^p \, dx$, (c) $\int_0^\infty x^p \, dx$

3. The Gamma function is defined by $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ for $x \in (0,\infty)$. Show that $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$.

- 4. Let $\alpha(x) = \begin{cases} -1, x \in [-1,0), \\ 0, x = 0 \\ 1, x \in (0,1] \end{cases}$ and $f \in \mathcal{B}[-1,1]$ such that f is continuous at 0. Evaluate $\int_{-1}^{1} f \, d\alpha$. 5. Let $\alpha(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} H(x - \frac{1}{n})$. Evaluate the following integrals. (a) $\int_{0}^{1} f \, d\alpha$ for $f \in \mathcal{C}[0,1]$, (b) $\int_{0}^{1} x \, d\alpha$, (c) $\int_{0}^{1} \alpha(x) \, dx$. 6. Let $\alpha(x) = H(x) + H(x - 1)$ on [-1,1] where $H(x) = \begin{cases} 0, x < 0, \\ 1, x \ge 0 \end{cases}$ (a) Find $\int_{-1}^{1} x^2 \, d\alpha$ without using integration by parts.
 - (b) Verify your answer in (a) using integration by parts.
 - (c) Determine whether $\int_{-1}^{1} \alpha(x) d\alpha(x)$ exists or not.
 - (d) For (c), we might try to use integration by parts as follows:

$$\int_{-1}^{1} \alpha \, d\alpha = \alpha^2 \Big|_{-1}^{1} - \int_{-1}^{1} \alpha \, d\alpha \qquad \Longrightarrow \qquad \int_{-1}^{1} \alpha \, d\alpha = \frac{2^2 - 0^2}{2} = 2$$

which is false. What is wrong in the above argument?

- 7. Find the following integrals if they exist, where $\widetilde{H}(x) = \begin{cases} 0, & x \leq 0, \\ 1, & x > 0. \end{cases}$ (a) $\int_{-1}^{1} H \, d\widetilde{H}$, (b) $\int_{-1}^{1} \widetilde{H} \, dH$.
- 8. Find the following integrals if they exist:

(a)
$$\int_0^3 [x] dx^2$$
, (b) $\int_0^3 x^2 d[x]$, (c) $\int_1^3 ([x] + x) d(x^2 + e^x)$.