
Read the following, which can all be found either in the textbook or on the course website.

- Chapters 8.2–8.5 of Visual Group Theory (VGT).
- VGT Exercises 8.19, 8.23, 8/26, 8.27, 8.37(ab), 8.41, 8.43–8.50.

Write up solutions to the following exercises.

- 1. Let \mathbb{Q} be the group of rational numbers under addition, \mathbb{Q}^* be the group of non-zero rational numbers under multiplication, and let \mathbb{Q}^+ be the group of positive rational numbers under multiplication.
 - (a) Show that $\mathbb{Q}^* \cong \mathbb{Q}^+ \times C_2$. [*Hint*: Recall that $C_2 = \{e^{0\pi i}, e^{\pi i}\} = \{1, -1\}$.]
 - (b) Describe the quotient groups $\mathbb{Q}/\langle 1 \rangle$ and $\mathbb{Q}^*/\langle -1 \rangle$. In particular, what do the elements (cosets) look like?
 - (c) Use the Fundamental Homomorphism Theorem to prove that $\mathbb{Q}^*/\langle -1 \rangle \cong \mathbb{Q}^+$.
- 2. For Parts (a)–(d), a group G is given together with a normal subgroup H. Illustrate the embedding $\phi: H \to G$, and the quotient map $q: G \to G/H$, chained together so that $\operatorname{im}(\phi) = \operatorname{ker}(\phi)$. An example for $G = \mathbb{Z}_6$ and $H = \mathbb{Z}_2$ is shown below:

- (a) $G = \mathbb{Z}_6, H = \mathbb{Z}_3,$
- (b) $G = D_3, H = C_3,$
- (c) $G = A_4, H = V_4,$

(d) $G = S_n$, $H = A_n$ [don't draw the actual Cayley graphs for this one, just the maps].

Now, answer each of the following questions about each of your answers to Parts (a)-(d).

- (e) What map θ into H would satisfy the equation $\operatorname{im} \theta = \ker \phi$? Choose one with the smallest possible domain.
- (f) What map θ' from G/H would satisfy the equation $\operatorname{im}(q) = \operatorname{ker}(\theta')$? Choose one with the smallest possible codomain.
- (g) Add the two maps θ and θ' to your illustration.
- (h) The new chain of four homomorphisms is called a *short exact sequence*. It is one way to use homomorphisms to illustrate quotients, and it shows a connection between embeddings and quotient maps. Given a normal subgroup $H \triangleleft G$, show how to create a short exact sequence involving G and H.

- 3. Let A and B be normal subgroups of G. In this problem, you will prove the *Diamond Isomorphism Theorem*.
 - (a) Prove that the set $AB := \{ab : a \in A, b \in B\}$ is a subgroup of G.
 - (b) Prove that $B \triangleleft AB$ and $A \cap B \triangleleft A$.
 - (c) Prove that $A/(A \cap B) \cong AB/B$. [*Hint:* Construct a homomorphism $\phi: A \to AB/B$ that has kernel $A \cap B$, then apply the FHT.]
 - (d) Draw a diagram, or lattice, of G and its subgroups AB, A, B, and $A \cap B$. Interpret the result in Part (c) in terms of this diagram.
- 4. For each part below, consider the group $G = \langle A, B \rangle$ generated by the two matrices shown. Assume that matrix multiplication is the binary operation, and $i = \sqrt{-1}$. To what common group is G isomorphic? Write down an explicit isomorphism (you only need to define it for the generators), and a group presentation for G.

(a)
$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
(b) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$.
(c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

5. In this exercise, you will prove that if A and B are normal subgroups of G, and AB = G, then

$$G/(A \cap B) \cong (G/A) \times (G/B).$$

(a) Consider the following map:

$$\phi \colon AB \longrightarrow (G/A) \times (G/B), \qquad \phi(g) = (gA, gB).$$

Show that ϕ is a homomorphism.

- (b) Show that ϕ is surjective. That is, given any (g_1A, g_2B) , show that there is some $g = ab \in AB$ such that $\phi(g) = (g_1A, g_2B)$. [*Hint*: Try $g = a_2b_1$.]
- (c) Find $\ker(\phi)$ [you need to prove your answer is correct] and then apply the Fundamental Homomorphism Theorem.
- 6. For each order given below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Additionally, write each one as a product of cyclic groups organized by "elementary divisors."
 - (a) 8
 - (b) 54
 - (c) 400
 - (d) p^2q , where p and q are distinct primes.