- 1. For each of the following rings R, determine the zero divisors (right and left, if appropriate), and the set U(R) of units.
  - (a) The set  $\mathcal{C}^1$  of continuous real-valued functions  $f: \mathbb{R} \to \mathbb{R}$ .
  - (b) The polynomial ring  $\mathbb{R}[x]$ .
  - (c)  $\mathbb{Z} \times \mathbb{Z}$ , where addition and multiplication are defined componentwise.
  - (d)  $\mathbb{R} \times \mathbb{R}$ , where addition and multiplication are defined componentwise.
- 2. The finite field  $\mathbb{F}_4$  on 4 elements can be constructed as the quotient of the polynomial  $\mathbb{Z}_2[x]$  by the ideal  $I = (x^2 + x + 1)$  generated by the irreducible polynomial  $x^2 + x + 1$ . The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field  $\mathbb{Z}_2[x]/(x^2 + x + 1) \cong \mathbb{F}_4$ .





- (a) Find a degree-3 polynomial  $f \in \mathbb{Z}_2[x]$  that is irreducible over  $\mathbb{Z}_2$ , and a degree-2 polynomial  $g \in \mathbb{Z}_3[x]$  that is irreducible over  $\mathbb{Z}_3$ . [*Hint*: Any polynomial with no roots in the prime field will work.]
- (b) Construct Cayley diagrams, addition, and multiplication tables for the finite fields

 $\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(f)$  and  $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(g)$ .

- 3. For each of the following ideals, determine if it is prime and if it is maximal.
  - (a) The ideal I = (x) in the polynomial ring  $R = \mathbb{Z}[x]$ .
  - (b) The ideal I = (x) in the polynomial ring  $R = \mathbb{R}[x]$ .
  - (c) The ideal I = (x, y) in the multivariate polynomial ring  $R = \mathbb{Z}[x, y]$ .
  - (d) The ideal I = (x, y) in the multivariate polynomial ring  $R = \mathbb{R}[x, y]$ .
- 4. Prove that if a left ideal I of a ring R contains a unit, then I = R.
- 5. Prove the Fundamental Homomorphism Theorem (FHT) for rings: If  $I \subseteq R$  is a two-sided ideal, then  $R/I \cong \operatorname{im} \phi$ . You may assume the FHT for groups.
- 6. Let R be a commutative ring with 1.
  - (a) Prove that R is an integral domain if and only if 0 is a prime ideal.
  - (b) Prove that an ideal  $P \subseteq R$  is prime if and only if R/P is an integral domain.
  - (c) Show that every maximal ideal is prime.