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Overview

In this chapter, we will introduce 5 families of groups.

1. cyclic groups

2. abelian groups

3. dihedral groups

4. symmetric groups

5. alternating groups

Along the way, a variety of new concepts will arise, as well as some new visualization
techniques.

We will study permutations, how to write them concisely in cycle notation. Cayley’s
theorem tells us that every finite group is isomorphic to a collection of permutations.
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Cyclic groups

Definition

A group is cyclic if it can be generated by a single element.

Finite cyclic groups describe the symmetry of objects that have only rotational
symmetry. Here are some examples of such objects.

An obvious choice of generator would be: a counterclockwise rotation by 2π/n (called
a “click”), where n is the number of “arms.” This leads to the following presentation:

Cn = 〈r | rn = e〉 .

Remark

This is not the only choice of generator; but it’s a natural one. Can you think of
another choice of generator? Would this change the group presentation?
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Cyclic groups

Definition

The order of a group G is the number of distinct elements in G , denoted by |G |.

The cyclic group of order n (i.e., n rotations) is denoted Cn (or sometimes by Zn).

For example, the group of symmetries for the objects on the previous slide are C3

(boric acid), C4 (pinwheel), and C10 (chilies).

Comment

The alternative notation Zn comes from the fact that the binary operation for Cn is
just modular addition. To add two numbers in Zn, add them as integers, divide by n,
and take the remainder.

For example, in Z6 : 3 + 5 ≡6 2. “3 clicks + 5 clicks = 2 clicks”. (If the context is
clear, we may even write 3 + 5 = 2.)
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Cyclic groups, additively
A common way to write elements in a cyclic group is with the integers
0, 1, 2, . . . , n − 1, where

0 is the identity

1 is the single counterclockwise “click”.

Observe that the set {0, 1, . . . , n − 1} is closed under addition modulo n. That is, if
we add (mod n) any two numbers in this set, the result is another member of the set.

Here are some Cayley diagrams of cyclic groups, using the canonical generator of 1.

0

12

0 1

23

Summary

In this setting, the cyclic group consists of the set Zn = {0, 1, . . . , n − 1} under the
binary operation of + (modulo n). The (additive) identity is 0.

M. Macauley (Clemson) Chapter 5: Five families of groups Math 4120, Summer I 2014 5 / 37

mailto:macaule@clemson.edu


Cyclic groups, multiplicatively

Here’s another natural choice of notation for cyclic groups. If r is a generator (e.g., a
rotation by 2π/n), then we can denote the n elements by

1, r , r 2, . . . , rn−1.

Think of r as the complex number e2πi/n, with the group operation being
multiplication!

Note that rn = 1, rn+1 = r , rn+2 = r 2, etc. Can you see modular addition rearing its
head again? Here are some Cayley diagrams, using the canonical generator of r .

1

rr2

1 r

r2r3

Summary

In this setting, the cyclic group can be thought of as the set Cn = {e2πik/n | k ∈ Z}
under the binary operation of ×. The (multiplicative) identity is 1.
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More on cyclic groups

One of our notations for cyclic groups is “additive” and the other is “multiplicative.”
This doesn’t change the actual group; only our choice of notation.

Remark

The (unique) infinite cyclic group (additively) is (Z,+), the integers under addition.
Using multiplicative notation, the infinite cyclic group is

G = 〈r | 〉 = {r k : k ∈ Z}.

For the infinite cyclic group (Z,+), only 1 or −1 can be generators. (Unless we use
multiple generators, which is usually pointless.)

Proposition

Any number from {0, 1, . . . , n − 1} that is relatively prime to n will generate Zn.

For example, 1 and 5 generate Z6, while 1, 2, 3, and 4 all generate Z5. i.e.,

Z6 = 〈1〉 = 〈5〉 , Z5 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉 .

Note that the above notation isn’t a presentation, it just means “generated by.”
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More on cyclic groups

Modular addition has a nice visual appearance in the multiplication tables of cyclic
groups.

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

1

2

3

4

0

2

3

4

0

1

3

4

0

1

2

4

0

1

2

3

There are many things worth commenting on, but one of the most important
properties of the multiplication tables for cyclic groups is the following:

Observation

If the headings on the multiplication table are arranged in the “natural” order
(0, 1, 2, . . . n − 1) or (e, r , r 2, . . . rn−1), then each row is a cyclic shift to the left of
the row above it.

Do you see why this happens?
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Orbits

We started our discussion with cyclic groups because of their simplicity, but also
because they play a fundamental role in more complicated groups.

Before continuing our exploration into the 5 families, let’s observe how cyclic groups
“fit” into other groups.

Consider the Cayley diagram for D3:
e

rr2

f

r2 f rf

Do you see any copies of the Cayley diagram for any cyclic groups in this picture?

Starting at e, the red arrows lead in a length-3 cycle around the inside of the
diagram. We refer to this cycle as the orbit of the element r .

The blue arrows lead in a length-2 cycle – the orbit of f .

Orbits are usually written with braces. In this case, the orbit of r is {e, r , r 2}, and the
orbit of f is {e, f }.
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Orbits

Every element in a group traces out an orbit. Some of these may not be obvious
from the Cayley diagram, but they are there nonetheless.

Let’s work out the orbits for the remaining elements of D3.

e

rr2

f

r2f rf

element orbit
e {e}
r {e, r , r 2}
r 2 {e, r 2, r}
f {e, f }
rf {e, rf }

r 2f {e, r 2f }

Note that there are 5 distinct orbits. The elements r and r 2 have the same orbit.
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Orbits

Definition

The order of an element g ∈ G , denoted |g |, is the size of its orbit. That is,
|g | := |〈g〉|. (Recall that the order of G is defined to be |G |.)

Note that in any group, the orbit of e will simply be {e}.

In general, the orbit of an element g is the set

〈g〉 := {g k : k ∈ Z}.

This set is not necessarily infinite, as we’ve seen with the finite cyclic groups.

We allow negative exponents, though this only matters in infinite groups.

One way of thinking about this is that the orbit of an element g is the collection of
elements that you can get to by doing g or its inverse any number of times.

Remark

In any group G , the orbit of an element g ∈ G is a cyclic group that “sits inside” G .
This is an example of a subgroup, which we will study in more detail later.
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Visualizing the orbits of a groups using “cycle graphs”

Example: Cycle graph of D3

element orbit
e {e}
r {e, r , r 2}
r 2 {e, r 2, r}
f {e, f }
rf {e, rf }

r 2f {e, r 2f }

e

rr2

f

rf

r2 f

Comments

In a cycle graph (also called an orbit graph), each cycle represents an orbit.

The convention is that orbits that are subsets of larger orbits are only shown
within the larger orbit.

We don’t color or put arrows on the edges of the cycles, because one orbit could
have multiple generators.

Intersections of cycles show what elements they have in common.

What do the cycle graphs of cyclic groups look like? (Answer: a single cycle.)
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Abelian groups
Recall that a group is abelian (named after Neils Abel) if the order of actions is
irrelevant (i.e., the actions commute). Here is the formal mathematical definition.

Definition

A group G is abelian if ab = ba for all a, b ∈ G .

Abelian groups are sometimes referred to as commutative.

Remark

To check that a group G is abeliean, it suffices to only check that ab = ba for all
pairs of generators of G . (Why?)

The pattern on the left never appears in the Cayley graph for an abelian group,
whereas the pattern on the right illustrates the relation ab = ba:

∗ ∗
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Examples

Cyclic groups are abelian.

Reason 1: The left configuration on the previous slide can never occur (since there is
only one generator).

Reason 2: In the cyclic group 〈r〉, every element can be written as r k for some k.
Clearly, r k rm = rmr k for all k and m.

Note that the converse fails: if a group is abelian, it need not be cyclic. (Take V4 as
an example.)

Let’s explore a little further. The following are Cayley diagrams for three groups of
order 8.

C4×C2 D4 Q4

Are any of these groups abelian?
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Multiplication tables of abelian groups

Abelian groups are easy to spot if you look at their multiplication tables.

The property “ab = ba for all a and b” means that the table must be symmetric
across the main diagonal.

a

b ba

a b

ab

sa
m

e

ab
=

ba

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

1

2

3

4

0

2

3

4

0

1

3

4

0

1

2

4

0

1

2

3
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Dihedral groups

While cyclic groups describe 2D objects that only have rotational symmetry, dihedral
groups describe 2D objects that have rotational and reflective symmetry.

Regular polygons have rotational and reflective symmetry. The dihedral group that
describes the symmetries of a regular n-gon is written Dn.

All actions in Cn are also actions of Dn, but there are more than that. The group Dn

contains 2n actions:

n rotations

n reflections.

However, we only need two generators. Here is one possible choice:

1. r = counterclockwise rotation by 2π/n radians. (A single “click.”)

2. f = flip (fix an axis of symmetry).

Here is one of (of many) ways to write the 2n actions of Dn:

Dn = {e, r , r 2, . . . , rn−1︸ ︷︷ ︸
rotations

, f , rf , r 2f , . . . , rn−1f︸ ︷︷ ︸
reflections

} .
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Cayley diagrams of dihedral groups
Here is one possible presentation of Dn:

Dn = 〈r , f | rn = e, f 2 = e, rfr = f 〉.

Using this generating set, the Cayley diagrams for the dihedral groups all look similar.
Here they are for D3 and D4, respectively.

e

rr2

f

r2f rf

e

r

r2

r3

f

r3f

r2f

rf

There is a related infinite dihedral group D∞, with presentation

D∞ = 〈r , f | f 2 = e, rfr = f 〉.

We have already seen its Cayley diagram:

· · ·

· · ·

· · ·

· · ·
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Cayley diagrams of dihedral groups

If s and t are two reflections of an n-gon across adjacent axes of symmetry (i.e., axes
incident at π/n radians), then st is a rotation by 2π/n.

To see an explicit example, take s = rf and t = f in Dn; obviously st = (rf )f = r .

Thus, Dn can be generated by two reflections. This has group presentation

Dn = 〈s, t | s2 = e, t2 = e, (st)n = e〉

= {e, st, ts, (st)2, (ts)2, . . . ,︸ ︷︷ ︸
rotations

s, t, sts, tst, . . .︸ ︷︷ ︸
reflections

} .

What would the Cayley diagram corresponding to this generating set look like?

Remark

If n ≥ 3, then Dn is nonabelian, because rf 6= fr . However, the following relations are
very useful:

rf = frn−1, fr = rn−1f .

Looking at the Cayley graph should make these relations visually obvious.
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Cycle graphs of dihedral groups

The (maximal) orbits of Dn consist of

1 orbit of size n consisting of {e, r , . . . , rn−1};
n orbits of size 2 consisting of {e, r k f } for k = 0, 1, . . . , n − 1.

Here is the general pattern of the cycle graphs of the dihedral groups:

e

r

r2

r3

f

rf r2 f

r3 f e

r

r2r3

r4

f

rf
r2 f

r3 f

r4 f e

r

r2rn−2

rn−1

f

rf
r2 f

rn−2f

rn−1f

···

· ··

Note that the size-n orbit may have smaller subsets that are orbits. For example,
{e, r 2, r 4, . . . , rn−2} and {e, rn/2} are orbits if n is even.
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Multiplication tables of dihedral groups

The separation of Dn into rotations and reflections is also visible in their
multiplication tables. For example, here is D4:

e

r

r2

r3

f

rf

r2f

r3f

e r r2 r3 f rf r2f r3f

e

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

e

r3f

f

rf

r2f

r2

r3

e

r

r2f

r3f

f

rf

r3

e

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

e

r

r2

r3

rf

r2f

r3f

f

r3

e

r

r2

r2f

r3f

f

rf

r2

r3

e

r

r3f

f

rf

r2f

r

r2

r3

e

e

r

r2

r3

f

rf

r2f

r3f

e r r2 r3 f rf r2f r3f

e

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

e

r3f

f

rf

r2f

r2

r3

e

r

r2f

r3f

f

rf

r3

e

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

e

r

r2

r3

rf

r2f

r3f

f

r3

e

r

r2

r2f

r3f

f

rf

r2

r3

e

r

r3f

f

rf

r2f

r

r2

r3

e

non-flip flip

flip non-flip

As we shall see later, the partition of Dn as depicted above
forms the structure of the group C2. “Shrinking” a group in
this way is called taking a quotient.

It yields a group of order 2 with the following Cayley
diagram:

e

f

e f

e

f

f

e
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Symmetric groups

Most groups we have seen have been collections of ways to rearrange things. This
can be formalized.

Definition

A permutation is an action that rearranges a collection of things.

For convenience, we will usually refer to permutations of positive integers (just like
we did when we numbered our rectangle, etc.).

There are many ways to represent permutations, but we will use the notation
illustrated by the following example.

Example

Here are some permutations of 4 objects.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
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Combining permutations

In order for the set of permutations of n objects to form a group (what we want!),
we need to understand how to combine permutations. Let’s consider an example.

What should
1 2 3 4

followed by

1 2 3 4

be equal to?

The first permutation rearranges the 4 objects, and then we shuffle the result
according to the second permutation:

1 2 3 4 ∗ 1 2 3 4 = 1 2 3 4
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Groups of permutations

Fact

There are n! = n(n − 1) · · · 3 · 2 · 1 permutations of n items.

For example, there are 4! = 24 “permutation pictures” on 4 objects.

The collection of permutations of n items forms a group!

To verify this, we just have to check that the appropriate rules of one of our
definitions of a group hold.

How do we find the inverse of a permutation? Just reverse all of the arrows in the
permutation picture. For example, the inverse of

1 2 3 4

is simply

1 2 3 4
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The symmetric group

Definition

The group of all permutations of n items is called the symmetric group (on n
objects) and is denoted by Sn.

We’ve already seen the group S3, which happens to be the same as the dihedral
group D3, but this is the only time the symmetric groups and dihedral groups
coincide. (Why?)

Although the set of all permutations of n items forms a group, creating a group does
not require taking all permutations.

If we choose carefully, we can form groups by taking a subset of the permutations.

For example, the cyclic group Cn and the dihedral group Dn can both be thought of
groups of certain permutations of {1, . . . , n}. (Why? Do you see which permutations
they represent?)
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Cycle notation for Sn

We can concisely describe the permutation

1 2 3 4 as (1 2 3 4).

This is called cycle notation.

Observation 1

Every permutation can be decomposed into a product of disjoint cycles.

For example, in S10, we can write

1 2 3 4 5 6 7 8 9 10 as (1 4 6 5) (2 3) (8 10 9).

Observation 2

Disjoint cycles commute.

For example: (1 4 6 5) (2 3) (8 10 9) = (2 3) (8 10 9) (1 4 6 5).
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Cycle notation for Sn

Example

Consider the following permutations in S4:

1 2 3 4 is (1 2) (3 4)

1 2 3 4 is (2 3)

1 2 3 4
is (1 3) (2 4)

1 2 3 4 is (1 3 2)

Remark

It doesn’t matter “where we start” when writing the cycle. In the last example above,

(1 3 2) = (3 2 1) = (2 1 3) = (1 2) (2 3) = (1 2) (2 3) (2 3) (2 3) .
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Composing permutations in cycle notation

Recall how we combined permutations:

1 2 3 4 ∗ 1 2 3 4 = 1 2 3 4

In cycle notation, this is

(1 2 3 4) ◦ (1 3) (2 4) = (1 4 3 2) .

We read left-to-right. (Caveat: some books use the right-to-left convention as in
function composition.)

Do you see how to combine permutations in cycle notation? In the example above,
we start with 1 and then read off:

“1 goes to 2, then 2 goes to 4”; Write: (1 4

“4 goes to 1, then 1 goes to 3”; Write: (1 4 3

“3 goes to 4, then 4 goes to 2”; Write: (1 4 3 2

“2 goes to 3, then 3 goes to 1”; Write: (1 4 3 2)

In this case, we’ve used up each number in {1, . . . , n}. If we hadn’t, we’d take the
the smallest unused number and continue the process with a new (disjoint) cycle.
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Transpositions

A transposition is a permutation that swaps two objects and fixes the rest, e.g.:

1 2 · · · i − 1 i i+1 · · · j−1 j j+1 · · · n−1 n

In cycle notation, a transposition is just a 2-cycle, e.g., (i j).

Theorem

The group Sn is generated by transpositions.

Intuitively, this means that every permutation can be constructed by successively
exchanging pairs of objects.

In other words, if n people are standing in a row, and we want to rearrange them in
some other order, we can always do this by having successively having pairs of people
swap places.

In fact, we only need adjacent transpositions to generate Sn:

Sn = 〈 (1 2) , (2 3) , . . . , (n − 1 n) 〉 .
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Transpositions and the alternating groups

Remark

Even though every permutation in Sn can be written as a product of transpositions,
there may be many ways to do this.

For example:

(1 3 2) = (1 2) (2 3) = (1 2) (2 3) (2 3) (2 3) = (1 2) (2 3) (1 2) (1 2).

Theorem

The parity of a the number of transpositions of a fixed permutations is unique.

That is, a fixed permutation can either be written with an even number of
transpositions, or an odd number of transpositions, but not both!

We thus have a notion of even permutations and odd permutations.

Theorem

Exactly half of the permutations in Sn are even, and they form a group called the
alternating group, denoted An.
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Group work

In groups of 2–3, complete the following exercises.

1. Write the following products of permutations into a product of disjoint cycles:

(1 2 3) (1 2 3 4) in S4

(1 6) (1 2 4 5) (1 6 4 2 5 3) in S6.

Let G = S3, the symmetric group on three objects. This group has six elements.

2. Do the following for each element in S3:

Draw its “permutation picture.”

Write it as a product of disjoint transpositions (that is, using only (1 2),
(2 3), and (1 3)).

Write it as a product of disjoint adjacent transpositions (that is, using only
(1 2) and (2 3)).

Determine whether it is even or odd.

3. Now, write down the alternating group A3. This is the group consisting of only
the even permutations. What familiar group is this isomorphic to?
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Alternating groups

How can we verify that An a group?

The only major concern is it must be closed under combining permutations (all other
necessary properties are inherited from Sn).

Do you see why combining two even permutations yields an even permutation?

Interesting fact

For n ≤ 5, the group An consists precisely of the set of “squares” in Sn. By “square,”
we mean an element that can be written as an element of Sn times itself.

For example, the permutation 1 2 3 is a square in S3, because:

1 2 3 ∗ 1 2 3 = 1 2 3

In cycle notation, this is (1 3 2) = (1 2 3) (1 2 3).

We’ll see later why we called this group the “alternating” group. Note that An has

order
n!

2
.
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Platonic solids

The symmetric groups and alternating groups arise throughout group theory. In
particular, the groups of symmetries of the 5 Platonic solids are symmetric and
alternating groups.

There are only five 3-dimensional shapes (polytopes) all of whose faces are regular
polygons that meet at equal angles. These are called the Platonic solids:

The groups of symmetries of the Platonic
solids are as follows:

shape group
Tetrahedron A4

Cube S4

Octahedron S4

Icosahedron A5

Dodecahedron A5
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Platonic solids

The Cayley diagrams for these 3 groups can be arranged in some very interesting
configurations. In particular, the Cayley diagram for Platonic solid ‘X ’ can be
arranged on a truncated ‘X ’, where truncated refers to cutting off some corners.

For example, here are two representations for Cayley diagrams of A5. At left is a
truncated icosahedron and at right is a truncated dodecahedron.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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Cayley’s theorem

Any set of permutations that forms a group is called a permutation group.

Cayley’s theorem says that permutations can be used to construct any group.

In other words, every group has the same structure as (we say “is isomorphic to”)
some permutation group.

Warning! We are not saying that every group is isomorphic to some symmetric
group, Sn. Rather, every group is isomorphic to a subgroup of a some symmetric
group Sn – i.e., a subset of Sn that is also a group in its own right.

Question

Given a group, how do we associate it with a set of permutations?
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Cayley’s theorem; how to construct permutations

Here is an algorithm given a Cayley diagram with n nodes:

1. number the nodes 1 through n,

2. interpret each arrow type in Cayley diagram as a permutation.

The resulting permutations are the generators of the corresponding permutation
group.

Example

Let’s try this with D3 = 〈r , f 〉.

4

56

1

3 2

1 2 3 4 5 6

1 2 3 4 5 6

We see that D3 is isomorphic to the subgroup 〈(132)(456), (14)(25)(36)〉 of S6.
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Cayley’s theorem; how to construct permutations

Here is an algorithm given a multiplication table with n elements:

1. replace the table headings with 1 through n,

2. make the appropriate replacements throughout the rest of the table,

3. interpret each column as a permutation.

This results in a 1-1 correspondence between the original group elements (not just
the generators) and permutations.

Example

Let’s try this with the multiplication table for V4 = 〈v , h〉.

1

2

3

4

1 2 3 4
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1

Column 1: 1 2 3 4

Column 2: 1 2 3 4

Column 3: 1 2 3 4

Column 4: 1 2 3 4

We see that V4 is isomorphic to the subgroup 〈(12)(34), (13)(24)〉 of S4.
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Cayley’s theorem

Intuitively, two groups are isomorphic if they have the same structure.

Two groups are isomorphic if we can construct Cayley diagrams for each that look
identical.

Cayley’s Theorem

Every finite group is isomorphic to a collection of permutations.

Our algorithms exhibit a 1-1 correspondence between group elements and
permutations. However, we have not shown that the corresponding permutations
form a group, or that the resulting permutation group has the same structure as the
original.

What needs to be shown is that the permutation from the i th row followed by the
permutation from the jth column, results in the permutation that corresponding to
the cell in the i th row and jth column of the original table. See page 85 for a proof.
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