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Overview and some history

Plato (5th century B.C.) believed that the only “perfect”
geometric figures were the straight line and the circle.

In Ancient Greek geometry, this philosophy meant that there were only two
instruments available to perform geometric constructions:

1. the ruler: a single unmarked straight edge.

2. the compass: collapses when lifted from the page

Formally, this means that the only permissible
constructions are those granted by Euclid’s
first three postulates.

M. Macauley (Clemson) Chapter 12: Ruler and compass constructions Math 4120, Summer I 2014 2 / 16

mailto:macaule@clemson.edu


Overview and some history

Around 300 BC, ancient Greek mathematician Euclid wrote a
series of thirteen books that he called The Elements.

It is a collection of definitions, postulates (axioms), and
theorems & proofs, covering geometry, elementary number
theory, and the Greeks’ “geometric algebra.”

Book 1 contained Euclid’s famous 10 postulates, and other
basic propositions of geometry.

Euclid’s first three postulates

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center.

Using only these tools, lines can be divided into equal segments, angles can be
bisected, parallel lines can be drawn, n-gons can be “squared,” and so on.
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Overview and some history

One of the chief purposes of Greek mathematics was to find exact constructions for
various lengths, using only the basic tools of a ruler and compass.

The ancient Greeks were unable to find constructions for the following problems:

Problem 1: Squaring the circle

Draw a square with the same area as a given circle.

Problem 2: Doubling the cube

Draw a cube with twice the volume of a given cube.

Problem 3: Trisecting an angle

Divide an angle into three smaller angles all of the same size.

For over 2000 years, these problems remained unsolved.

Alas, in 1837, Pierre Wantzel used field theory to prove that these constructions were
impossible.
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What does it mean to be “constructible”?

Assume P0 is a set of points in R2 (or equivalently, in the complex plane C).

Definition

The points of intersection of any two distinct lines or circles are constructible in one
step.

A point r ∈ R2 is constructible from P0 if there is a finite sequence r1, . . . , rn = r of
points in R2 such that for each i = 1, . . . , n, the point ri is constructible in one step
from P0 ∪ {r1, . . . , ri−1}.

Example: bisecting a line

1. Start with a line p1p2;

2. Draw the circle of center p1 of radius p1p2;

3. Draw the circle of center p2 of radius p1p2;

4. Let r1 and r2 be the points of intersection;

5. Draw the line r1r2;

6. Let r3 be the intersection of p1p2 and r1r2.

•
p1

•
p2

•

•

r1

r2

•
r3
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Bisecting an angle

Example: bisecting an angle

1. Start with an angle at A;

2. Draw a circle centered at A;

3. Let B and C be the points of intersection;

4. Draw a circle of radius BC centered at B;

5. Draw a circle of radius BC centered at C ;

6. Let D and E be the intersections of these 2
circles;

7. Draw a line through DE .

•
A

•
B

•
C

•
D

•
E

•
re iθ/2

C

Suppose A is at the origin in the complex plane. Then B = r and C = re iθ.

Bisecting an angle means that we can construct re iθ/2 from re iθ.
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Constructible numbers: Real vs. complex

Henceforth, we will say that a point is constructible if it is constructible from the set

P0 = {(0, 0), (1, 0)} ⊂ R2 .

Say that z = x + yi ∈ C is constructible if (x , y) ∈ R2 is constructible. Let K ⊆ C
denote the constructible numbers.

Lemma

A complex number z = x + yi is constructible if x and y are constructible.

By the following lemma, we can restrict our focus on real constructible numbers.

Lemma

1. K ∩ R is a subfield of R if and only if K is a subfield of C.

2. Moreover, K ∩ R is closed under (nonnegative) square roots if and only if K is
closed under (all) square roots.

K ∩ R closed under square roots means that a ∈ K ∩ R+ implies
√
a ∈ K ∩ R.

K closed under square roots means that z = re iθ ∈ K implies
√
z =
√
re iθ/2 ∈ K .
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The field of constructible numbers

Theorem

The set of constructible numbers K is a subfield of C that is closed under taking
square roots and complex conjugation.

Proof (sketch)

Let a and b be constructible real numbers, with a > 0. It is elementary to check that
each of the following hold:

1. −a is constructible;

2. a + b is constructible;

3. ab is constructible;

4. a−1 is constructible;

5.
√
a is constructible;

6. a− bi is constructible provided that a + bi is.

Corollary

If a, b, c ∈ C are constructible, then so are the roots of ax2 + bx + c.
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Constructions as field extensions

Let F ⊂ K be a field generated by ruler and compass constructions.

Suppose α is constructible from F in one step. We wish to determine [F (α) : F ].

The three ways to construct new points from F

1. Intersect two lines. The solution to ax + by = c and dx + ey = f lies in F .

2. Intersect a circle and a line. The solution to{
ax + by = c
(x − d)2 + (y − e)2 = r 2

lies in (at most) a quadratic extension of F .

3. Intersect two circles. We need to solve the system{
(x − a)2 + (y − b)2 = s2

(x − d)2 + (y − e)2 = r 2

Multiply this out and subtract. The x2 and y 2 terms cancel, leaving the equation
of a line. Intersecting this line with one of the circles puts us back in Case 2.

In all of these cases, [F (α) : F ] ≤ 2.
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Constructions as field extensions

In others words, constructing a number α 6∈ F in one step amounts to taking a
degree-2 extension of F .

Theorem

A complex number α is constructible if and only if there is a tower of field extensions

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊆ C

where α ∈ Kn and [Ki+1 : Ki ] ≤ 2 for each i .

Corollary

If α ∈ C is constructible, then [Q(α) : Q] = 2n for some n ∈ N.

We will show that the ancient Greeks’ classical construction problems are impossible
by demonstrating that each would yield a number α ∈ R such that [Q(α) : Q] is not
a power of two.
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Classical constructibility problems, rephrased

Problem 1: Squaring the circle

Given a circle of radius r (and hence of area πr 2), construct a square of area πr 2

(and hence of side-length
√
πr).

If one could square the circle, then
√
π ∈ K . However,

Q ⊂ Q(π) ⊂ Q(
√
π)

and so [Q(
√
π) : Q] ≥ [Q(π) : Q] =∞. Hence

√
π is not constructible.

Problem 2: Doubling the cube

Given a cube of length ` (and hence of volume `3), construct a cube of of volume 2`3

(and hence of side-length 3
√

2`).

If one could double the cube, then 3
√

2 ∈ K .

However, [Q( 3
√

2) : Q] = 3 is not a power of two. Hence 3
√

2 is not constructible.
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Classical constructibility problems, rephrased

Problem 3: Trisecting an angle

Given e iθ, construct e iθ/3. Or equivalently, construct cos(θ/3) from cos(θ).

We will show that θ = 60◦ cannot be trisected. In other words, that α = cos(20◦)
cannot be constructed from cos(60◦).

The triple angle formula yields

cos(θ) = 4 cos3(θ/3)− 3 cos(θ/3) .

Set θ = 60◦. Plugging in cos(θ) = 1/2 and α = cos(20◦) gives

4α3 − 3α− 1

2
= 0 .

Changing variables by u = 2α, and then multiplying through by 2:

u3 − 3u − 1 = 0 .

Thus, u is the root of the (irreducible!) polynomial x3 − 3x − 1. Therefore,
[Q(u) : Q] = 3, which is not a power of 2.

Hence, u = 2 cos(20◦) is not constructible, so neither is α = cos(20◦).
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Summary

The three classical ruler-and-compass constructions that stumped the ancient Greeks,
when translated in the language of field theory, are as follows:

Problem 1: Squaring the circle

Construct
√
π from 1.

Problem 2: Doubling the cube

Construct 3
√

2 from 1.

Problem 3: Trisecting an angle

Construct cos(θ/3) from cos(θ). [Or cos(20◦) from 1.]

Since none of these numbers these lie in an extension of Q of degree 2n, they are not
constructible.

If one is allowed a “marked ruler,” then these constructions become possible, which
the ancient Greeks were aware of.
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Construction of regular polygons

The ancient Greeks were also interested in constructing regular polygons. They knew
constructions for 3-, 5-, and 15-gons.

In 1796, nineteen-year-old Carl Friedrich Gauß, who was
undecided about whether to study mathematics or languages,
discovered how to construct a regular 17-gon.

Gauß was so pleased with his discovery that he dedicated his
life to mathematics.

He also came up with the following theorem about which n-gons are constructible.

Theorem (Gauß, Wantzel)

Let p be an odd prime. A regular p-gon is constructible if and only if p = 22n + 1 for
some n ≥ 0.

The next question to ask is for which n is 22n + 1 prime?
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Construction of regular polygons and Fermat primes

Definition

The nth Fermat number is Fn := 22n + 1. If Fn is prime, then it is a Fermat prime.

The first few Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.

They are named after Pierre Fermat (1601–1665), who conjectured in the 1600s that
all Fermat numbers Fn = 22n + 1 are prime.
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Construction of regular polygons and Fermat primes

In 1732, Leonhard Euler disproved Fermat’s
conjecture by demonstrating

F5 = 225+1 = 232+1 = 4294967297 = 641·6700417 .

It is not known if any other Fermat primes exist!

So far, every Fn is known to be composite for 5 ≤ n ≤ 32. In 2014, a computer
showed that 193× 23329782 + 1 is a prime factor of

F3329780 = 223329780 + 1 > 101010
6

.

Theorem (Gauß, Wantzel)

A regular n-gon is constructible if and only if n = 2kp1 · · · pm, where p1, . . . , pm are
distinct Fermat primes.

If these type of problems interest you, take Math 4100! (Number theory)
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