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Introduction

Definition

A ring is an additive (abelian) group R with an additional binary operation
(multiplication), satisfying the distributive law:

x(y + z) = xy + xz and (y + z)x = yx + zx ∀x , y , z ∈ R .

Remarks

There need not be multiplicative inverses.

Multiplication need not be commutative (it may happen that xy 6= yx).

A few more terms

If xy = yx for all x , y ∈ R, then R is commutative.

If R has a multiplicative identity 1 = 1R 6= 0, we say that “R has identity” or
“unity”, or “R is a ring with 1.”

A subring of R is a subset S ⊆ R that is also a ring.
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Introduction

Examples

1. Z ⊂ Q ⊂ R ⊂ C are all commutative rings with 1.

2. Zn is a commutative ring with 1.

3. For any ring R with 1, the set Mn(R) of n × n matrices over R is a ring. It has
identity 1Mn(R) = In iff R has 1.

4. For any ring R, the set of functions F = {f : R → R} is a ring by defining

(f + g)(r) = f (r) + g(r) (fg)(r) = f (r)g(r) .

5. The set S = 2Z is a subring of Z but it does not have 1.

6. S =

{[
a 0
0 0

]
: a ∈ R

}
is a subring of R = M2(R). However, note that

1R =

[
1 0
0 1

]
, but 1S =

[
1 0
0 0

]
.

7. If R is a ring and x a variable, then the set

R[x ] = {anxn + · · · a1x + a0 | ai ∈ R}

is called the polynomial ring over R.
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Another example: the quaternions

Recall the (unit) quaternion group:

Q4 = 〈i , j , k | i2 = j2 = k2 = −1, ij = k〉.

1

j
k

−i

−1

−j

−k
i

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:

H = {a + bi + cj + dk | a, b, c, d ∈ R} .

The set H is isomorphic to a subring of Mn(R), the real-valued 4× 4 matrices:

H =


 a −b −c −d
−b a −d c
c d a −b
d −c b a

 : a, b, c, d ∈ R

 ⊆ M4(R) .

Formally, we have an embedding φ : H ↪→ M4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

We say that H is represented by a set of matrices.
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Units and zero divisors

Definition

Let R be a ring with 1. A unit is any x ∈ R that has a multiplicative inverse. Let
U(R) be the set (a multiplicative group) of units of R.

An element x ∈ R is a left zero divisor if xy = 0 for some y 6= 0. (Right zero divisors
are defined analogously.)

Examples

1. Let R = Z. The units are U(R) = {−1, 1}. There are no (nonzero) zero divisors.

2. Let R = Z10. Then 7 is a unit (and 7−1 = 3) because 7 · 3 = 1. However, 2 is
not a unit.

3. Let R = Zn. A nonzero k ∈ Zn is a unit if gcd(n, k) = 1, and a zero divisor if
gcd(n, k) ≥ 2.

4. The ring R = M2(R) has zero divisors, such as:[
1 −2
−2 4

] [
6 2
3 1

]
=

[
0 0
0 0

]
The groups of units of M2(R) are the invertible matrices.
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Group rings
Let R be a commutative ring (usually, Z, R, or C) and G a finite (multiplicative)
group. We can define the group ring RG as

RG := {a1g1 + · · ·+ angn | ai ∈ R, gi ∈ G} ,

where multiplication is defined in the “obvious” way.

For example, let R = Z and G = D4 = 〈r , f | r 4 = f 2 = rfrf = 1〉, and consider the
elements x = r + r 2 − 3f and y = −5r 2 + rf in ZD4. Their sum is

x + y = r − 4r 2 − 3f + rf ,

and their product is

xy = (r + r 2 − 3f )(−5r 2 + rf ) = r(−5r 2 + rf ) + r 2(−5r 2 + rf )− 3f (−5r 2 + rf )

= −5r 3 + r 2f − 5r 4 + r 3f + 15fr 2 − 3frf = −5− 8r 3 + 16r 2f + r 3f .

Remarks

The (real) Hamiltonians H is not the same ring as RQ4.

If |G | > 1, then RG always has zero divisors, because if |g | = k > 1, then:

(1− g)(1 + g + · · ·+ g k−1) = 1− g k = 1− 1 = 0.

RG contains a subring isomorphic to R, and the group of units U(RG) contains
a subgroup isomorphic to G .
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Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring.
(Think: “field without commutativity”.)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.
(Think: “field without inverses”.)

A field is just a commutative division ring. Moreover:

fields ( division rings

fields ( integral domains ( all rings

Examples

Rings that are not integral domains: Zn (composite n), 2Z, Mn(R), Z× Z, H.

Integral domains that are not fields (or even division rings): Z, Z[x ], R[x ], R[[x ]]
(formal power series).

Division ring but not a field: H.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as
cancellation: ax = ay =⇒ x = y . However, this need not hold in all rings!

Examples where cancellation fails

In Z6, note that 2 = 2 · 1 = 2 · 4, but 1 6= 4.

In M2(R), note that

[
1 0
0 0

]
=

[
0 1
0 0

] [
4 1
1 0

]
=

[
0 1
0 0

] [
1 2
1 0

]
.

However, everything works fine as long as there aren’t any (nonzero) zero divisors.

Proposition

Let R be an integral domain and a 6= 0. If ax = ay for some x , y ∈ R, then x = y .

Proof

If ax = ay , then ax − ay = a(x − y) = 0.

Since a 6= 0 and R has no (nonzero) zero divisors, then x − y = 0. �
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Finite integral domains

Lemma (HW)

If R is an integral domain and 0 6= a ∈ R and k ∈ N, then ak 6= 0. �

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and 0 6= a ∈ R. It suffices to show that a has a
multiplicative inverse.

Consider the infinite sequence a, a2, a3, a4, . . . , which must repeat.

Find i > j with ai = aj , which means that

0 = ai − aj = aj(ai−j − 1).

Since R is an integral domain and aj 6= 0, then ai−j = 1.

Thus, a · ai−j−1 = 1. �
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Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a
normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples

nZE Z.

If R = M2(R), then I =

{[
a 0
c 0

]
: a, c ∈ R

}
is a left, but not a right ideal of R.

The set Symn(R) of symmetric n× n matrices is a subring of Mn(R), but not an
ideal.
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Ideals

Remark

If an ideal I of R contains 1, then I = R.

Proof

Suppose 1 ∈ I , and take an arbitrary r ∈ R.

Then r1 ∈ I , and so r1 = r ∈ I . Therefore, I = R. �

It is not hard to modify the above result to show that if I contains any unit, then
I = R. (HW)

Let’s compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

(left) ideals of rings are characterized by being invariant under (left)
multiplication:

I ⊆ R is a (left) ideal iff ri ∈ I for all r ∈ R, i ∈ I .
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Ideals generated by sets

Definition

The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left: {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X},
Right: {x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X},
Two-sided: {r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X}.
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Ideals and quotients
Since an ideal I of R is an additive subgroup (and hence normal), then:

R/I = {x + I | x ∈ R} is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition

If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof

We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This
means that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)y + r(y − s) ∈ I .
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Finite fields

We’ve already seen that Zp is a field if p is prime, and that finite integral domains
are fields. But what do these “other” finite fields look like?

Let R = Z2[x ] be the polynomial ring over the field Z2. (Note: we can ignore all
negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over Z2 because it does not have a
root. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1), the set of multiples of x2 + x + 1.

In the quotient ring R/I , we have the relation x2 + x + 1 = 0, or equivalently,
x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “I ”, and just write

R/I = Z2[x ]/(x2 + x + 1) ∼= {0, 1, x , x + 1} .

It is easy to check that this is a field!
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Finite fields

Here is a Cayley diagram, and the operation tables for R/I = Z2[x ]/(x2 + x + 1):

0 1

x x+1

+

0

1

x

x+1

0 1 x x+1

0

1

x

x+1

1

0

x+1

x

x

x+1

0

1

x+1

x

1

0

×
1

x

x+1

1 x x+1

1

x

x+1

x

x+1

1

x+1

1

x

Theorem

There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn

for some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x ]/(f ) ,

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics
over F28 = F256. This is what allows your CD to play despite scratches.
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Homomorphisms: groups vs. rings (spoilers!)
Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

The quotient group G/N exists iff N is a normal subgroup.

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is a normal subgroup: Ker φE G .

For every normal subgroup N E G , there is a natural quotient homomorphism
φ : G → G/N, φ(g) = gN.

There are four standard isomorphism theorems for groups.

Ring theory

The quotient ring R/I exists iff I is a two-sided ideal.

A homomorphism is a structure-preserving map: f (x + y) = f (x) + f (y) and
f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker φE R.

For every two-sided ideal I E R, there is a natural quotient homomorphism
φ : R → R/I , φ(r) = r + I .

There are four standard isomorphism theorems for rings.
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Ring homomorphisms

Definition

A ring homomorphism is a function f : R → S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f : R → S is the set Ker f := {x ∈ R : f (x) = 0}.

Examples

1. The function φ : Z→ Zn that sends k 7→ k (mod n) is a ring homomorphism
with Ker(φ) = nZ.

2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −→ R , φ : p(x) 7−→ p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal I = (x2 + x + 1) in Z2[x ]:

φ : Z2[x ] −→ Z2[x ]/I , f (x) 7−→ f (x) + I .
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The isomorphism theorems for rings

Fundamental homomorphism theorem

If φ : R → S is a ring homomorphism, then Ker φ is an ideal and Im(φ) ∼= R/Ker(φ).

R

(I = Ker φ)

φ

any homomorphism

R
/
Ker φ

quotient
ring

Imφ ≤ S

q
quotient
process

g
remaining isomorphism
(“relabeling”)

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show
that Ker φ is a (two-sided) ideal, and the following map is a ring homomorphism:

g : R/I −→ Imφ , g(x + I ) = φ(x) .
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The second isomorphism theorem for rings

Diamond isomorphism theorem

Suppose S is a subring and I an ideal of R. Then

(i) The sum S + I = {s + i | s ∈ S , i ∈ I} is a subring of R
and the intersection S ∩ I is an ideal of S .

(ii) The following quotient rings are isomorphic:

(S + I )/I ∼= S/(S ∩ I ) .

R

S + I

|||
| AAA

A

S I

S ∩ I

BBBB }}}}

Proof (sketch)

S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S , i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I .

Showing S ∩ I is an ideal of S is straightforward (homework exercise).

We already know that (S + I )/I ∼= S/(S ∩ I ) as additive groups.

One explicit isomorphism is φ : s + (S ∩ I ) 7→ s + I . It is easy to check that φ : 1 7→ 1
and φ preserves products. �
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The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals J ⊆ I . Then I/J is an ideal of R/J and

(R/J)/(I/J) ∼= R/I .

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
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The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (&
ideals) of R/I and subrings (& ideals) of R that contain I . In particular, every ideal
of R/I has the form J/I , for some ideal J satisfying I ⊆ J ⊆ R.

R

I1 S1 I3

I2 S2 S3 I4

I

subrings & ideals that contain I

R/I

I1/I S1/I I3/I

I2/I S2/I S3/I I4/I

0

subrings & ideals of R/I
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Maximal ideals

Definition

An ideal I of R is maximal if I 6= R and if I ⊆ J ⊆ R holds for some ideal J, then
J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

1. If n 6= 0, then the ideal M = (n) of R = Z is maximal if and only if n is prime.

2. Let R = Q[x ] be the set of all polynomials over Q. The ideal M = (x)
consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring Q[x ]/(x) have the form f (x) + M = a0 + M.

3. Let R = Z2[x ], the polynomials over Z2. The ideal M = (x2 + x + 1) is
maximal, and R/M ∼= F4, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
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Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal I ⊆ R.

(i) I is a maximal ideal;

(ii) R/I is simple;

(iii) R/I is a field.

Proof

The equivalence (i)⇔(ii) is immediate from the Correspondence Theorem.

For (ii)⇔(iii), we’ll show that an arbitrary ring R is simple iff R is a field.

“⇒”: Assume R is simple. Then (a) = R for any nonzero a ∈ R.

Thus, 1 ∈ (a), so 1 = ba for some b ∈ R, so a ∈ U(R) and R is a field. X

“⇐”: Let I ⊆ R be a nonzero ideal of a field R. Take any nonzero a ∈ I .

Then a−1a ∈ I , and so 1 ∈ I , which means I = R. X �
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Prime ideals

Definition

Let R be a commutative ring. An ideal P ⊂ R is prime if ab ∈ P implies either a ∈ P
or b ∈ P.

Note that p ∈ N is a prime number iff p = ab implies either a = p or b = p.

Examples

1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x ], the ideal I = (2, x) is a prime ideal. It consists of all
polynomials whose constant coefficient is even.

Theorem

An ideal P ⊆ R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary

In a commutative ring, every maximal ideal is prime.
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