
Chapter 14: Divisibility and factorization

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4120, Summer I 2014

M. Macauley (Clemson) Chapter 14: Divisibility and factorization Math 4120, Summer I 2014 1 / 23

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


Introduction

A ring is in some sense, a generalization of the familiar number systems like Z, R,
and C, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

multiplication is commutative,

there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an
integral domain, and we will define R∗ := R \ {0}.

The integers have several basic properties that we usually take for granted:

every nonzero number can be factored uniquely into primes;

any two numbers have a unique greatest common divisor and least common
multiple;

there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to
understand this better.
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Divisibility

Definition

If a, b ∈ R, say that a divides b, or b is a multiple of a if b = ac for some c ∈ R. We
write a | b.

If a | b and b | a, then a and b are associates, written a ∼ b.

Examples

In Z: n and −n are associates.

In R[x ]: f (x) and c · f (x) are associates for any c 6= 0.

The only associate of 0 is itself.

The associates of 1 are the units of R.

Proposition (HW)

Two elements a, b ∈ R are associates if and only if a = bu for some unit u ∈ U(R).

This defines an equivalence relation on R, and partitions R into equivalence classes.
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Irreducibles and primes

Note that units divide everything: if b ∈ R and u ∈ U(R), then u | b.

Definition

If b ∈ R is not a unit, and the only divisors of b are units and associates of b, then b
is irreducible.

An element p ∈ R is prime if p is not a unit, and p | ab implies p | a or p | b.

Proposition

If 0 6= p ∈ R is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then p = ab with a, b 6∈ U(R).

Then (wlog) p | a, so a = pc for some c ∈ R. Now,

p = ab = (pc)b = p(cb) .

This means that cb = 1, and thus b ∈ U(R), a contradiction. �
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Irreducibles and primes

Caveat: Irreducible 6⇒ prime

Consider the ring R−5 := {a + b
√
−5 : a, b ∈ Z}.

3 | (2 +
√
−5)(2−

√
−5) = 9 = 3 · 3 ,

but 3 - 2 +
√
−5 and 3 - 2−

√
−5.

Thus, 3 is irreducible in R−5 but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique
factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles
need be the same!

For example, consider the ring R = Z[x2, x3]. Then

x6 = x2 · x2 · x2 = x3 · x3.

The element x2 ∈ R is not prime because x2 | x3 · x3 yet x2 - x3 in R (note: x 6∈ R).
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Principal ideal domains
Fortunately, there is a type of ring where such “bad things” don’t happen.

Definition

An ideal I generated by a single element a ∈ R is called a principal ideal. We denote
this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

The ring of integers, Z.

Any field F .

The polynomial ring F [x ] over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:

pairs of elements have a “greatest common divisor” & “least common multiple”;

irreducible ⇒ prime;

Every element factors uniquely into primes.
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Greatest common divisors & least common multiples

Proposition

If I ⊆ Z is an ideal, and a ∈ I is its smallest positive element, then I = (a).

Proof

Pick any positive b ∈ I . Write b = aq + r , for q, r ∈ Z and 0 ≤ r < a.

Then r = b − aq ∈ I , so r = 0. Therefore, b = qa ∈ (a). �

Definition

A common divisor of a, b ∈ R is an element d ∈ R such that d | a and d | b.

Moreover, d is a greatest common divisor (GCD) if c | d for all other common
divisors c of a and b.

A common multiple of a, b ∈ R is an element m ∈ R such that a | m and b | m.

Moreover, m is a least common multiple (LCM) if m | n for all other common
multiples n of a and b.
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Nice properties of PIDs

Proposition

If R is a PID, then any a, b ∈ R∗ have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x , y ∈ R.

Proof

Existence. The ideal generated by a and b is

I = (a, b) = {ua + vb : u, v ∈ R} .

Since R is a PID, we can write I = (d) for some d ∈ I , and so d = xa + yb.

Since a, b ∈ (d), both d | a and d | b hold.

If c is a divisor of a & b, then c | xa + yb = d , so d is a GCD for a and b. X

Uniqueness. If d ′ is another GCD, then d | d ′ and d ′ | d , so d ∼ d ′. X �
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Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof

Let p ∈ R be irreducible and suppose p | ab for some a, b ∈ R.

If p - a, then gcd(p, a) = 1, so we may write 1 = xa + yp for some x , y ∈ R. Thus

b = (xa + yp)b = x(ab) + (yb)p .

Since p | x(ab) and p | (yb)p, then p | x(ab) + (yb)p = b. �

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any a, b ∈ R∗ have an LCM, m = lcm(a, b).

It is unique up to associates, and can be characterized as a generator of the ideal
I := (a) ∩ (b).
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Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples

1. Z is a UFD: Every integer n ∈ Z can be uniquely factored as a product of
irreducibles (primes):

n = pd1
1 pd2

2 · · · p
dk
k .

This is the fundamental theorem of arithmetic.

2. The ring Z[x ] is a UFD, because every polynomial can be factored into
irreducibles. But it is not a PID because the following ideal is not principal:

(2, x) = {f (x) : the constant term is even}.

3. The ring R−5 is not a UFD because 9 = 3 · 3 = (2 +
√
−5)(2−

√
−5).

4. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A
ring is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

stabilizes, meaning that Ik = Ik+1 = Ik+2 = · · · holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

X = {a ∈ R∗ \ U(R) : a can’t be written as a product of irreducibles}.

If X 6= ∅, then pick a1 ∈ X . Factor this as a1 = a2b, where a2 ∈ X and b 6∈ U(R).
Then (a1) ( (a2) ( R, and repeat this process. We get an ascending chain

(a1) ( (a2) ( (a3) ( · · ·

that does not stabilize. This is impossible in a PID, so X = ∅. �
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Summary of ring types

fields

Q

AR
R(
√
−π) Q(

√
m)

Z2[x]/(x2 +x+1)

F256

CZp

Q( 3
√

2, ζ)

PIDs
F [x ] Z

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5

commutative rings

2Z

Z× Z Z6

all rings
RG Mn(R)

H
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The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the
Elements, in which he described what is now known as
the Euclidean algorithm:

Proposition VII.2 (Euclid’s Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

If a | b, then gcd(a, b) = a;

If a = bq + r , then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)
360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)
294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)
66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)
30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.
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Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm
still works.

Definition

An integral domain R is Euclidean if it has a degree function d : R∗ → Z satisfying:

(i) non-negativity: d(r) ≥ 0 ∀r ∈ R∗.

(ii) monotonicity: d(a) ≤ d(ab) for all a, b ∈ R∗.

(iii) division-with-remainder property: For all a, b ∈ R, b 6= 0, there are q, r ∈ R
such that

a = bq + r with r = 0 or d(r) < d(b) .

Note that Property (ii) could be restated to say: If a | b, then d(a) ≤ d(b);

Examples

R = Z is Euclidean. Define d(r) = |r |.
R = F [x ] is Euclidean if F is a field. Define d(f (x)) = deg f (x).

The Gaussian integers R−1 = Z[
√
−1] = {a + bi : a, b ∈ Z} is Euclidean with

degree function d(a + bi) = a2 + b2.
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Euclidean domains

Proposition

If R is Euclidean, then U(R) = {x ∈ R∗ : d(x) = d(1)}.

Proof

⊆”: First, we’ll show that associates have the same degree. Take a ∼ b in R∗:

a | b =⇒ d(a) ≤ d(b)

b | a =⇒ d(b) ≤ d(a)
=⇒ d(a) = d(b).

If u ∈ U(R), then u ∼ 1, and so d(u) = d(1). X

“⊇”: Suppose x ∈ R∗ and d(x) = d(1).

Then 1 = qx + r for some q ∈ R with either r = 0 or d(r) < d(x) = d(1).

If r 6= 0, then d(1) ≤ d(r) since 1 | r .

Thus, r = 0, and so qx = 1, hence x ∈ U(R). X �
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Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let I 6= 0 be an ideal and pick some b ∈ I with d(b) minimal.

Pick a ∈ I , and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: r = a− bq ∈ I , and by minimality, d(b) ≤ d(r).

Therefore, r = 0, which means a = bq ∈ (b). Since a was arbitrary, I = (b). �

Exercises.

(i) The ideal I = (3, 2 +
√
−5) is not principal in R−5.

(ii) If R is an integral domain, then I = (x , y) is not principal in R[x , y ].

Corollary

The rings R−5 (not a PID or UFD) and R[x , y ] (not a PID) are not Euclidean.
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Algebraic integers
The algebraic integers are the roots of monic polynomials in Z[x ]. This is a subring
of the algebraic numbers (roots of all polynomials in Z[x ]).

Assume m ∈ Z is square-free with m 6= 0, 1. Recall the quadratic field

Q(
√
m) =

{
p + q

√
m | p, q ∈ Q

}
.

Definition

The ring Rm is the set of algebraic integers in Q(
√
m), i.e., the subring consisting of

those numbers that are roots of monic quadratic polynomials x2 + cx + d ∈ Z[x ].

Facts

Rm is an integral domain with 1.

Since m is square-free, m 6≡ 0 (mod 4). For the other three cases:

Rm =


Z[
√
m] =

{
a + b

√
m : a, b ∈ Z

}
m ≡ 2 or 3 (mod 4)

Z
[

1+
√
m

2

]
=
{
a + b

(
1+
√
m

2
) : a, b ∈ Z

}
m ≡ 1 (mod 4)

R−1 is the Gaussian integers, which is a PID. (easy)

R−19 is a PID. (hard)
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Algebraic integers

Definition

For x = r + s
√
m ∈ Q(

√
m), define the norm of x to be

N(x) = (r + s
√
m)(r − s

√
m) = r 2 −ms2 .

Rm is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises

Assume m ∈ Z is square-free, with m 6= 0, 1.

u ∈ U(Rm) iff |N(u)| = 1.

If m ≥ 2, then U(Rm) is infinite.

U(R−1) = {±1,±i} and U(R−3) =
{
± 1, ± 1±

√
−3

2

}
.

If m = −2 or m < −3, then U(Rm) = {±1}.
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Euclidean domains and algebraic integers

Theorem

Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Theorem (D.A. Clark, 1994)

The ring R69 is a Euclidean domain that is not norm-Euclidean.

Let α = (1 +
√

69)/2 and c > 25 be an integer. Then the following degree function
works for R69, defined on the prime elements:

d(p) =

{
|N(p)| if p 6= 10 + 3α

c if p = 10 + 3α

Theorem

If m < 0 and m 6∈ {−11,−7,−3,−2,−1}, then Rm is not Euclidean.

Open problem

Classify which Rm’s are PIDs, and which are Euclidean.
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PIDs that are not Euclidean

Theorem

If m < 0, then Rm is a PID iff

m ∈ {−1,−2,−3,−7,−11︸ ︷︷ ︸
Euclidean

,−19,−43,−67,−163} .

Recall that Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Corollary

If m < 0, then Rm is a PID that is not Euclidean iff m ∈ {−19,−43,−67,−163}.
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Algebraic integers

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the
leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean
fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).
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Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic
polynomial of degree ≤ 7 with coefficients from {0,±1,±2,±3,±4,±5}. From Wikipedia.
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Summary of ring types (refined)

fields

QA
R(
√
−π, i) R

Fpn

CZp

Q(
√
m)

Euclidean domains

Z F [x ]

R−1 R69

PIDs
R−43

R−19

R−67

R−163

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5 2Z

Z× Z Z6

commutative rings

all rings
RG Mn(R)

H
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