Math 2080: Differential Equations Worksheet 7.1: The heat equation

NAME:

You will solve for the function u(x,t) defined for $0 \le x \le \pi$ and $t \ge 0$ which satisfies the following IVP/BVP of the heat equation:

$$u_t = c^2 u_{xx}$$
 $u(0,t) = u(\pi,t) = 0,$ $u(x,0) = 4\sin x - 3\sin 2x.$

(a) Carefully describe (and sketch) a physical situation that this models. [Use a computer to sketch the initial condition.]

(b) Assume that u(x,t) = f(x)g(t). Compute u_t and u_{xx} , and derive boundary conditions for f(x).

(c) Plug u = fg back into the PDE and separate variables by dividing both sides of the equation by $c^2 fg$. Now set this equal to a constant λ , and write down two ODEs: one for g(t), and a BVP for f(x). (d) Recall from Section 6 that the BVP for f has a solution $f_n(x)$ for each $\lambda = -n^2$ where n = 1, 2, ..., and that solution is $f_n(x) = b_n \sin nx$. Now, given such $\lambda = -n^2$ solve the ODE for g. Call this solution $g_n(t)$.

(e) Find the general solution of the PDE. As before, it will be a superposition (infinite sum) of solutions $u_n(x,t) = f_n(x)g_n(t)$.

(f) Find the particular solution to the IVP by using the initial condition.

(g) What is the steady-state solution? Give a physical interpretation for this quantity.

Written by M. Macauley 2