Math 2080: Differential Equations Worksheet 3.4: Simple harmonic motion

Worksheet 3.4: Simple harmonic motion	
NAME: When a 3 kg mass is hung from a spring, the spring is displaced by 1 m. Now, suppose that the mass is hanging from rest and then given a sharp jolt downwards so its initial velocity is 1 m/sec. We will set up and solve an initial value problem that models this.	
(b)	At equilibrium, the spring force kx_0 equals the gravitational force, mg , in magnitude. Use this to solve for the spring constant k .
(c)	Newton's 2^{nd} law tells us that $F = mx''$, which is equal to the sum of the forces (gravitational and spring). Write down a second-order differential equation that models this. Include both initial conditions, $x(0)$ and $x'(0)$.

Written by M. Macauley

(d) Find the general solution to this ODE. Is there a steady-state solution? If so, describe it.

(e) Solve the initial value problem.

Written by M. Macauley 2