Math 2080: Differential Equations Worksheet 4.4: Solving a 2×2 system of ODEs

NAME:

Consider the system of differential equations: $\begin{cases} x_1' = -2x_1 + x_2 - 12, & x_1(0) = 5 \\ x_2' = 4x_1 + x_2 - 18, & x_2(0) = 20 \end{cases}$

1. Write this in matrix form, x' = Ax + b, and find the steady-state solution, x_{ss} .

2. Make a change of variables to transform the system into a homogeneous system.

3. Solve the homogeneous system. The eigenvalues of \boldsymbol{A} are $\lambda_1=-3,\ \lambda_2=2,$ with eigenvectors $\boldsymbol{v}_1=\begin{bmatrix} -1\\1 \end{bmatrix}$ and $\boldsymbol{v}_2=\begin{bmatrix} 1\\4 \end{bmatrix}$.

4. Solve the solution to the original system of differential equations, by writing $x = x_h + x_{ss}$.

5. Sketch the phases portrait of the homogeneous system, and the inhomogeneous system. Also sketch the particular solutions satisfying the given initial conditions.