Math 2080: Differential Equations Worksheet 4.5: Phase portraits with real eigenvalues

NAME:

Suppose the eigenvalues and eigenvectors of a 2×2 matrix \mathbf{A} are given. Write the general solution to the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then, sketch the phase portrait (the graph x_2 vs. x_1). Make sure that your sketch is accurate enough that it is clear which way the solution curves "bend", if applicable. Also, you should clearly distinguish between e.g., a line of slope 2 and a line of slope 1/2.

1.
$$\lambda_1 = -2, \ \lambda_2 = 2, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

2.
$$\lambda_1 = -2, \ \lambda_2 = -3, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

3.
$$\lambda_1 = -2, \ \lambda_2 = -30, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

4.
$$\lambda_1 = 2, \ \lambda_2 = 3, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

5.
$$\lambda_1 = 0.2, \ \lambda_2 = 3, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

6.
$$\lambda_1 = 0$$
, $\lambda_2 = 3$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$.