Lecture 1.3: Approximating Solutions to Differential Equations

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Motivation (from single variable calculus)

Classic calculus problem
Suppose $f(1)=1$ and $f^{\prime}(1)=1 / 2$. Use the tangent line to $f(x)$ at $x=1$ to approximate $f(1.5)$.

Old vs. New

Classic calculus problem

Suppose $f(1)=1$ and $f^{\prime}(1)=1 / 2$. Use the tangent line to $f(x)$ at $x=1$ to approximate $f(1.5)$.

New differential equation problem
Consider the ODE $y^{\prime}=y-t$, and say $y(1)=1$. Can we approximate $y(1.5)$?

Euler's method

Example

Suppose $y(t)$ solves the ODE $y^{\prime}=y-t$, and $y(1)=1$. Use Euler's method to approximate $y(1.5)$.

Euler's method

Summary

Given $y^{\prime}=f(t, y)$ and $y\left(t_{0}\right)=y_{0}$ with a stepsize h :

$$
\begin{aligned}
\left(t_{1}, y_{1}\right) & =\left(t_{0}+h, y_{0}+f\left(t_{0}, y_{0}\right) \cdot h\right) \\
\left(t_{2}, y_{2}\right) & =\left(t_{1}+h, y_{1}+f\left(t_{1}, y_{1}\right) \cdot h\right) \\
& \vdots \\
\left(t_{k+1}, y_{k+1}\right) & =\left(t_{k}+h, y_{k}+f\left(t_{k}, y_{k}\right) \cdot h\right)
\end{aligned}
$$

