Lecture 2.3: Newton's second law of motion

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Newton's 2nd law of motion

F = ma. (Force = mass × acceleration)

Falling objects with air resistance

Differential equation

We just derived the following ODE: $v' = -g - \frac{r}{m}v$, where v(t) is velocity, $g \approx 9.81 m/s^2$, *m* is mass, and r > 0 is a constant.

An example

Example 1 (exponential decay to a value)

A 70kg object falls from rest, and its terminal velocity is -20 m/s.

- (a) Find its velocity and distance traveled after 2 seconds.
- (b) How long does it take to reach 80% of its terminal velocity?

An example: $v(t) = -20 + 20e^{-\frac{1}{20}gt}$

Example 1 (exponential decay to a value)

A 70kg object falls from rest, and its terminal velocity is -20 m/s.

- (a) Find its velocity and distance traveled after 2 seconds.
- (b) How long does it take to reach 80% of its terminal velocity?

An example: $v(t) = -20 + 20e^{-\frac{1}{20}gt}$

Example 1 (exponential decay to a value)

A 70kg object falls from rest, and its terminal velocity is -20 m/s.

- (a) Find its velocity and distance traveled after 2 seconds.
- (b) How long does it take to reach 80% of its terminal velocity?