Lecture 2.4: Solving first order inhomogeneous differential equations

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Linear differential equations
High school algebra
A linear equation has the form $f(x)=a x+b$.

Differential equations

- A (1st order) linear differential equation has the form $y^{\prime}=a(t) y+f(t)$.
- A (1st order) homogeneous linear differential equation has the form $y^{\prime}=a(t) y$.

Examples

- $y^{\prime}=t^{2} y+5$
- $y^{\prime}=t y^{2}+5$
- $y^{\prime}=t \sin y$
- $y^{\prime}=y \sin t$
- $y^{\prime}=t^{3}+2 t^{2}+t+1$

Solving homogeneous ODEs

Method 1: Integrating factor

First steps

1. Write the equation as $y^{\prime}(t)-a(t) y(t)=f(t)$;
2. Multiply both sides by $e^{-\int a(t) d t}$, the "integrating factor."

A familiar example

Example 1

Solve $y^{\prime}=2 y+t$ using the integrating factor method.

Some practice

Find the integrating factor
(a) $y^{\prime}+4 y=t^{2}$
(b) $y^{\prime}+(\sin t) y=1$

Some more practice

Find the integrating factor
(c) $y^{\prime}-12 t^{5} y=t^{3}$
(d) $y^{\prime}+\frac{1}{t} y=1$

Method 2: Variation of parameters

Steps to solving $y^{\prime}(t)+a(t) y(t)=f(t)$

1. Find the solution $y_{h}(t)$ to the the related "homogeneous equation"

$$
y^{\prime}(t)+a(t) y(t)=0
$$

2. Assume the general solution is $y(t)=v(t) y_{h}(t)$, and plug this back to the ODE and solve for $v(t)$.

Remarks

- This works "equally well" as the integrating factor (IF) method.

■ Variation of parameters has a built-in "check-point" that IF does not.
■ Variation of parameters can be used to solve 2nd order ODEs, whereas IF does not generalize.

Method 2: Variation of parameters

Example

Solve the ODE $y^{\prime}=2 y+t$ using the variation of parameters method.

