Lecture 2.4: Solving first order inhomogeneous differential equations

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Linear differential equations

High school algebra

A linear equation has the form f(x) = ax + b.

Differential equations

- A (1st order) linear differential equation has the form y' = a(t)y + f(t).
- A (1st order) homogeneous linear differential equation has the form y' = a(t)y.

Examples

- $\bullet y' = t^2y + 5$
- $\quad y' = ty^2 + 5$
- $y' = t \sin y$
- $y' = y \sin t$

•
$$y' = t^3 + 2t^2 + t + 1$$

Solving homogeneous ODEs

Method 1: Integrating factor

First steps

- 1. Write the equation as y'(t) a(t)y(t) = f(t);
- 2. Multiply both sides by $e^{-\int a(t) dt}$, the "integrating factor."

A familiar example

Example 1

Solve y' = 2y + t using the integrating factor method.

Some practice

Find the integrating factor

(a)
$$y' + 4y = t^2$$

(b) $y' + (\sin t)y = 1$

Some more practice

Find the integrating factor

(c)
$$y' - 12t^5y = t^3$$

(d) $y' + \frac{1}{t}y = 1$

Method 2: Variation of parameters

Steps to solving y'(t) + a(t)y(t) = f(t)

1. Find the solution $y_h(t)$ to the the related "homogeneous equation"

y'(t) + a(t)y(t) = 0.

2. Assume the general solution is $y(t) = v(t)y_h(t)$, and plug this back to the ODE and solve for v(t).

Remarks

- This works "equally well" as the integrating factor (IF) method.
- Variation of parameters has a built-in "check-point" that IF does not.
- Variation of parameters can be used to solve 2nd order ODEs, whereas IF does not generalize.

Method 2: Variation of parameters

Example

Solve the ODE y' = 2y + t using the variation of parameters method.