Lecture 2.5: Linear differential equations

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Motivation

Recall

A first order ODE is linear if it can be written as

$$
y^{\prime}(t)+a(t) y(t)=f(t),
$$

and moreover, is homogeneous if $f(t)=0$.

Linear differential equations and their solutions have a lot of structure.

Understanding the structure helps demystify these objects and reveals their simplicity.

We will see two "Big Ideas" in this lecture, and these will re-appear when we study 2nd order ODEs.

Along the way, we will uncover a neat short-cut for solving ODEs that is usually not covered in a differential equation course.

Big idea \#1: homogeneous ODEs

Big idea 1

Suppose a homogeneous ODE $y^{\prime}+a(t) y(t)=0$ has solutions $y_{1}(t)$ and $y_{2}(t)$. Then

$$
C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a solution for any constants C_{1} and C_{2}.

Big idea \#2: inhomogeneous ODEs

Big idea 2

Consider an inhomogeneous ODE $y^{\prime}+a(t) y(t)=f(t)$. If $y_{p}(t)$ is any particular solution, and $y_{h}(t)$ is the general solution to the related "homogeneous equation", $y^{\prime}+a(t) y=0$, then the general solution to the inhomogeneous equation is

$$
y(t)=y_{h}(t)+y_{p}(t) .
$$

A nice shortcut

Applications of $y=y_{h}+y_{p}$

- Solving for $y_{h}(t)$ is usually easy (separate variables).
- Sometimes, it's easy to find some $y_{p}(t)$ by inspection.
- When this happens, we automatically have the general solution!

Example 1

Solve $T^{\prime}=k(72-T)$.

Exploiting our shortcut

Example 2

Solve $y^{\prime}=2 y+t$.

Exploiting our shortcut

Example 3

Solve $y^{\prime}=2 y+e^{3 t}$.

An interesting observation

