Lecture 2.6: Mixing problems

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 2080, Differential Equations

Motivation

Problem statement

Suppose we have a tank of fresh water.

- Salt water flows IN at some (constant) rate.
- The water in the tank is fully mixed.

■ Water drains OUT of the tank at the same rate.
Question: What is the concentration of salt in the tank at time t ?

An example

Example 1

Suppose we have a tank containing 150 gallons of fresh water.
■ Salt water (concentration: $2 \mathrm{oz} / \mathrm{gal}$) flows in at $3 \mathrm{gal} / \mathrm{min}$.

- The water in the tank is fully mixed.
- Water drains from the tank at $3 \mathrm{gal} / \mathrm{min}$.

Question: What is the concentration of salt in the tank at time t ?

First step (always!)
Let $x(t)=\#$ ounces of salt in the tank at time t. Then

$$
x^{\prime}(t)=(\text { rate in })-(\text { rate out })
$$

Example 1 (cont.)

