Lecture 2.7: Advanced mixing problems

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Motivation

Last time

Suppose we have a tank of fresh water.

- Salt water flows IN at some (constant) rate.
- The water in the tank is fully mixed.
- Water drains OUT of the tank at the same rate.

Question: What is the concentration of salt in the tank at time t ?

This time

What if. . .

- The incoming and outgoing rates are different?
- There are two tanks, and one drains into the other.

Rate in \neq Rate out

Example 2

Suppose we have a tank containing 150 gallons of fresh water.

- Salt water (concentration: $2 \mathrm{oz} / \mathrm{gal}$) flows in at $3 \mathrm{gal} / \mathrm{min}$.
- The water in the tank is fully mixed.
- Water drains from the tank at $1 \mathrm{gal} / \mathrm{min}$.

Question: What is the concentration of salt in the tank the moment it overflows?

First step (always!)
Let $x(t)=\#$ ounces of salt in the tank at time t. Then

$$
x^{\prime}(t)=(\text { rate in })-(\text { rate out })
$$

Example 2 (cont.)

Two tanks

Example 3

Suppose we have two tanks, A and B.

- Tank A contains 100 gallons and 20 oz of salt.
- Tank B contains 200 gallons and 40 oz of salt.
- Fresh water enters tank A at $5 \mathrm{gal} / \mathrm{min}$.
- Tank A drains into tank B at $5 \mathrm{gal} / \mathrm{min}$.
- Tank B drains at $5 \mathrm{gal} / \mathrm{min}$.

Question: How much salt is there in each tank at time t?

Example 3 (cont.)

