Lecture 3.2: Equations with constant coefficients

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Recall

A linear 2nd order ODE has the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$, and it is homogeneous if $f(t)=0$.

Approach

We will always solve the related "homogeneous equation" first. In this lecture, we will consider homogeneous ODEs for which $p(t)$ and $q(t)$ are constants. The general solution will be

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t) .
$$

Goal: Find any $y_{1}(t)$ and $y_{2}(t)$ that solve the ODE.

Example 1

Find the general solution to $y^{\prime \prime}=k^{2} y$.

Example 2

Find the general solution to $y^{\prime \prime}=-k^{2} y$.

More examples

Example 3

Find the general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

A problem case

Example 4

Find the general solution to $y^{\prime \prime}-6 y^{\prime}+9 y=0$.

Another problem case

Example 5

Suppose we want to solve $y^{\prime \prime}+p y^{\prime}+q y=0$, and the roots of the characteristic equation are complex numbers $r_{1,2}=a \pm b i$, with $b \neq 0$.

A review of complex numbers and Euler's formula

