Lecture 3.2: Equations with constant coefficients

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Recall

A linear 2nd order ODE has the form y'' + p(t)y' + q(t)y = f(t), and it is homogeneous if f(t) = 0.

Approach

We will *always* solve the related "homogeneous equation" first. In this lecture, we will consider homogeneous ODEs for which p(t) and q(t) are constants. The general solution will be

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$
.

Goal: Find any $y_1(t)$ and $y_2(t)$ that solve the ODE.

Example 1

Find the general solution to $y'' = k^2 y$.

Example 2

Find the general solution to $y'' = -k^2 y$.

More examples

Example 3

Find the general solution to y'' - 3y' + 2y = 0.

A problem case

Example 4

Find the general solution to y'' - 6y' + 9y = 0.

Another problem case

Example 5

Suppose we want to solve y'' + py' + qy = 0, and the roots of the characteristic equation are complex numbers $r_{1,2} = a \pm bi$, with $b \neq 0$.

A review of complex numbers and Euler's formula