Lecture 3.3: The method of undetermined coefficients

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Recall our two "big ideas" for 1st order linear ODEs

Big idea 1

Suppose a homogeneous ODE $y^{\prime}+a(t) y(t)=0$ has solutions $y_{1}(t)$ and $y_{2}(t)$. Then

$$
C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a solution for any constants C_{1} and C_{2}.

Big idea 2

Consider an inhomogeneous ODE $y^{\prime}+a(t) y(t)=f(t)$. If $y_{p}(t)$ is any particular solution, and $y_{h}(t)$ is the general solution to the related "homogeneous equation", $y^{\prime}+a(t) y=0$, then the general solution to the inhomogeneous equation is

$$
y(t)=y_{h}(t)+y_{p}(t) .
$$

Inhomogeneous 2nd order linear ODEs: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$

Big idea 1

Suppose the homogeneous ODE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ has solutions $y_{1}(t)$ and $y_{2}(t)$. Then

$$
C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a solution for any constants C_{1} and C_{2}.

Inhomogeneous 2nd order linear ODEs: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$

Big idea 2

The general solution to a 2 nd order inhomogeneous ODE is

$$
y(t)=y_{h}(t)+y_{p}(t)=C_{1} y_{1}(t)+C_{1} y_{2}(t)+y_{p}(t),
$$

where $y_{p}(t)$ is any particular solution and $y_{h}(t)$ is the general solution to the related homogeneous equation.

How to find a particular solution

Method of undetermined coefficients

1. Guess a solution of the "same type" as the forcing term, $f(t)$.
2. Plug this back in and solve for the unknown coefficients.

Example 1 (exponential forcing term)

Find the general solution to $y^{\prime \prime}-5 y^{\prime}+4 y=e^{3 t}$.

Sinusoid forcing term

Example 2

Find the general solution to $y^{\prime \prime}+2 y^{\prime}-3 y=5 \sin 3 t$.

Polynomial forcing term

Example 3

Find the general solution to $y^{\prime \prime}+2 y^{\prime}-3 y=6 t^{2}+t-2$.

A problem case

Example 4

Find the general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=e^{2 t}$.

Mixed forcing terms

Example 5

Find the general solution to $y^{\prime \prime}+2 y^{\prime}-3 y=5 \sin 3 t+6 t^{2}+t-2$.

Mixed forcing terms

Theorem

Suppose:

- $y^{\prime \prime}+p y^{\prime}+q y=f(t)$ has solution $y_{f}(t)$;
- $y^{\prime \prime}+p y^{\prime}+q y=g(t)$ has solution $y_{g}(t)$.

Then $y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)$ has solution $\alpha y_{f}(t)+\beta y_{g}(t)$.

