Lecture 3.3: The method of undetermined coefficients

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Recall our two "big ideas" for 1st order linear ODEs

Big idea 1

Suppose a homogeneous ODE y' + a(t)y(t) = 0 has solutions $y_1(t)$ and $y_2(t)$. Then

 $C_1 y_1(t) + C_2 y_2(t)$

is a solution for any constants C_1 and C_2 .

Big idea 2

Consider an inhomogeneous ODE y' + a(t)y(t) = f(t). If $y_p(t)$ is any particular solution, and $y_h(t)$ is the general solution to the related "homogeneous equation", y' + a(t)y = 0, then the general solution to the inhomogeneous equation is

$$y(t)=y_h(t)+y_p(t).$$

Inhomogeneous 2nd order linear ODEs: y'' + p(t)y' + q(t)y = f(t)

Big idea 1

Suppose the homogeneous ODE y'' + p(t)y' + q(t)y = 0 has solutions $y_1(t)$ and $y_2(t)$. Then

 $C_1y_1(t)+C_2y_2(t)$

is a solution for any constants C_1 and C_2 .

Inhomogeneous 2nd order linear ODEs: y'' + p(t)y' + q(t)y = f(t)

Big idea 2

The general solution to a 2nd order inhomogeneous ODE is

$$y(t) = y_h(t) + y_p(t) = C_1 y_1(t) + C_1 y_2(t) + y_p(t)$$

where $y_p(t)$ is any particular solution and $y_h(t)$ is the general solution to the related homogeneous equation.

How to find a particular solution

Method of undetermined coefficients

- 1. Guess a solution of the "same type" as the forcing term, f(t).
- 2. Plug this back in and solve for the unknown coefficients.

Example 1 (exponential forcing term)

Find the general solution to $y'' - 5y' + 4y = e^{3t}$.

Sinusoid forcing term

Example 2

Find the general solution to $y'' + 2y' - 3y = 5 \sin 3t$.

Polynomial forcing term

Example 3

Find the general solution to $y'' + 2y' - 3y = 6t^2 + t - 2$.

A problem case

Example 4

Find the general solution to $y'' - 3y' + 2y = e^{2t}$.

Mixed forcing terms

Example 5

Find the general solution to $y'' + 2y' - 3y = 5\sin 3t + 6t^2 + t - 2$.

Mixed forcing terms

Theorem

Suppose:

•
$$y'' + py' + qy = f(t)$$
 has solution $y_f(t)$;

•
$$y'' + py' + qy = g(t)$$
 has solution $y_g(t)$.

Then $y'' + py' + qy = \alpha f(t) + \beta g(t)$ has solution $\alpha y_f(t) + \beta y_g(t)$.