Lecture 3.4: Simple harmonic motion

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Mass-spring systems

If x(t) is the displacement of a mass m on a spring, then x(t) satsifies

$$mx'' + 2cx' + \omega_0^2 x = f(t),$$

where

- *c* is the damping constant
- ω_0 is frequency
- f(t) is the external driving force

Harmonic motion: $mx'' + 2cx' + \omega_0^2 x = f(t)$

Simple harmonic motion

When there is no damping or driving force, then the mass exhibits simple harmonic motion:

$$x'' + kx = 0, \qquad k = \omega^2 > 0.$$

A better way to write the solution to $x'' + \omega^2 x = 0$

Big idea

Any function $x(t) = a\cos(\omega t) + b\sin(\omega t)$ can be written as a single cosine wave

$$\mathbf{x}(t) = A\cos(\omega t - \phi) = A\cos\left(\omega\left(t - \frac{\phi}{\omega}
ight)
ight)$$

with

- Amplitude $A = \sqrt{a^2 + b^2}$
- Phase shift ϕ/ω , where " $\phi = \tan^{-1}(b/a)$."

Simple harmonic motion with an external force

Example

A 2 kg mass is suspended from a spring. The displacement of the spring once the mass is attached is 0.5 meters. If the mass is displaced 0.12m downward from equilibrium, set up and solve the initial value problem that models this.