Lecture 3.5: Damped and forced harmonic motion

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Harmonic motion

Recall that if $x(t)$ is the displacement of a mass m on a spring, then $x(t)$ satsifies

$$
m x^{\prime \prime}+2 c x^{\prime}+\omega_{0}^{2} x=f(t),
$$

where

- c is the damping constant
- ω_{0} is frequency
- $f(t)$ is the external driving force

In this lecture, we will analyze the cases when $c \neq 0$ and when $f(t)$ is sinusoidal.

Damped harmonic motion

The homogeneous case
Divide through by the mass m and we get a 2 nd order constant coefficient ODE:

$$
x^{\prime \prime}+2 c x^{\prime}+\omega_{0}^{2} x=0
$$

Forced harmonic motion: $f(t) \neq 0$

An example

When the driving frequency is sinusoidal, the ODE for $x(t)$ is

$$
x^{\prime \prime}+2 c x^{\prime}+\omega_{0}^{2} x=A \cos \omega t
$$

where

- c is the damping coefficient;
- ω_{0} is the natural frequency;
- ω is the driving frequency.

In this lecture, we will analyze the case when $c=0$.

Case 1: $\omega \neq \omega_{0}$.

Forced harmonic motion: $f(t) \neq 0$

Summary so far

The general solution to $x^{\prime \prime}+\omega_{0}^{2} x=A \cos \omega t, \omega \neq \omega_{0}$ is

$$
x(t)=x_{h}(t)+x_{p}(t)=C_{1} \cos \omega_{0} t+C_{2} \sin \omega_{0} t+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos \omega t .
$$

Case 2: $\omega=\omega_{0}$
We need to solve $x^{\prime \prime}+\omega_{0}^{2} x=A \cos \omega_{0} t$.

Case 2: $\omega=\omega_{0}$
Summary so far
The general solution to $x^{\prime \prime}+\omega_{0}^{2} x=A \cos \omega_{0} t$ is

$$
x(t)=x_{h}(t)+x_{p}(t)=C_{1} \cos \omega_{0} t+C_{2} \sin \omega_{0} t+\frac{A t}{2 \omega_{0}} \sin \omega_{0} t .
$$

