Lecture 3.5: Damped and forced harmonic motion

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Harmonic motion

Recall that if x(t) is the displacement of a mass m on a spring, then x(t) satsifies

$$mx'' + 2cx' + \omega_0^2 x = f(t)$$

where

- *c* is the damping constant
- ω_0 is frequency
- f(t) is the external driving force

In this lecture, we will analyze the cases when $c \neq 0$ and when f(t) is sinusoidal.

Damped harmonic motion

The homogeneous case

Divide through by the mass *m* and we get a 2nd order constant coefficient ODE:

$$x'' + 2cx' + \omega_0^2 x = 0$$

Forced harmonic motion: $f(t) \neq 0$

An example

When the driving frequency is sinusoidal, the ODE for x(t) is

$$x'' + 2cx' + \omega_0^2 x = A\cos\omega t \,,$$

where

- *c* is the damping coefficient;
- ω_0 is the natural frequency;
- $\blacksquare \ \omega$ is the driving frequency.

In this lecture, we will analyze the case when c = 0.

Case 1: $\omega \neq \omega_0$.

Forced harmonic motion: $f(t) \neq 0$

Summary so far

The general solution to $x'' + \omega_0^2 x = A \cos \omega t$, $\omega \neq \omega_0$ is

$$\mathbf{x}(t) = \mathbf{x}_h(t) + \mathbf{x}_p(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{A}{\omega_0^2 - \omega^2} \cos \omega t$$

Case 2: $\omega = \omega_0$

We need to solve $x'' + \omega_0^2 x = A \cos \omega_0 t$.

Case 2: $\omega = \omega_0$

Summary so far

The general solution to $x'' + \omega_0^2 x = A \cos \omega_0 t$ is

$$\mathbf{x}(t) = \mathbf{x}_h(t) + \mathbf{x}_p(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{At}{2\omega_0} \sin \omega_0 t$$