Lecture 3.8: Power series solutions

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Cauchy-Euler equations

Last time we looked at ODEs of the form $x^2y'' + axy' + by = 0$. It made sense that there would be a solution of the form $y(x) = x^r$.

Example 4

Consider the following homogeneous ODE: y'' - 4xy' + 12y = 0. Solve for y(x).

Power series solutions

Example 4 (cont.)

Consider the following homogeneous ODE: y'' - 4xy' + 12y = 0. Solve for y(x).

What do these solutions look like?

Example 4 (cont.)

The homogeneous ODE y'' - 4xy' + 12y = 0 has a power series solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$,

where the coefficients satisfy the following recurrence relation: $a_{n+2} = \frac{4(n-3)}{(n+2)(n+1)}a_n$.

Summary

The "power series method"

To solve y'' - 4xy' + 12y = 0 for y(x), we took the following steps:

- 1. Assumed the solution has the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$.
- 2. Plugged the power series for y(x) back into the ODE.

3. Combined into a single sum
$$y(x) = \sum_{n=0}^{\infty} [$$
 $\cdots]x^n = 0.$

4. Set the x^n coefficient $[\cdots]$ equal to zero to get a recurrence $a_{n+2} = f(a_n)$.