Lecture 3.8: Power series solutions

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Cauchy-Euler equations

Last time we looked at ODEs of the form $x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0$. It made sense that there would be a solution of the form $y(x)=x^{r}$.

Example 4

Consider the following homogeneous ODE: $y^{\prime \prime}-4 x y^{\prime}+12 y=0$. Solve for $y(x)$.

Power series solutions

Example 4 (cont.)

Consider the following homogeneous ODE: $y^{\prime \prime}-4 x y^{\prime}+12 y=0$. Solve for $y(x)$.

What do these solutions look like?

Example 4 (cont.)

The homogeneous ODE $y^{\prime \prime}-4 x y^{\prime}+12 y=0$ has a power series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, where the coefficients satisfy the following recurrence relation: $a_{n+2}=\frac{4(n-3)}{(n+2)(n+1)} a_{n}$.

Summary

The "power series method"

To solve $y^{\prime \prime}-4 x y^{\prime}+12 y=0$ for $y(x)$, we took the following steps:

1. Assumed the solution has the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
2. Plugged the power series for $y(x)$ back into the ODE.
3. Combined into a single sum $y(x)=\sum_{n=0}^{\infty}[\quad \cdots \quad] x^{n}=0$.
4. Set the x^{n} coefficient [\cdots] equal to zero to get a recurrence $a_{n+2}=f\left(a_{n}\right)$.
