Lecture 3.9: The method of Frobenius

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Quick review of power series

Definitions

A power series centered at x_0 is a limit of partial sums:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \lim_{N \to \infty} \sum_{n=0}^{N} a_n (x - x_0)^n.$$

It converges at x if the sequence of partial sums converges. Otherwise, it diverges.

Examples

■ The power series
$$\lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!} x^n$$
 converges to e^x for all $x \in (-\infty, \infty)$.
■ The power series $\lim_{N \to \infty} \sum_{n=0}^{N} (-1)^n x^n$ converges to $\frac{1}{1+x}$ for all $x \in (-1, 1)$. It diverges at $x = 1$.

Radius of convergence

The largest number R such that if
$$|x - x_0| < R$$
, then $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges.

Ordinary vs. singular points of ODEs

Definitions

A function
$$f(x)$$
 is real analytic at x_0 if $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ for some $R > 0$.

Definition

Consider the ODE y'' + P(x)y' + Q(x)y = 0.

- The point x_0 is an ordinary point if P(x) and Q(x) are real analytic at x_0 .
- Otherwise x_0 is a singular point, which is:
 - regular if $(x x_0)P(x)$ and $(x x_0)^2Q(x)$ are real analytic.
 - irregular otherwise.

Example

Consider the homogeneous ODEs $y'' + x^2y - 4y = 0$.

Regular vs. irregular singular points

More examples

1.
$$(1 - x^2)y'' - xy' + p^2y = 0.$$

2. $x^3y'' + y' + y = 0$.

When does an ODE have a power series solution?

Theorem of Frobenius

Consider an ODE y'' + P(x)y' + Q(x)y = f(x). If x_0 is an ordinary point, and P(x), Q(x), and f(x) have radii of convergence R_P , R_Q , and R_f , respectively, then there is a power series solution

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \qquad R = \min\{R_P, R_Q, R_f\}.$$

If x_0 is a regular singular point and $(x - x_0)P(x)$, $(x - x_0)^2Q(x)$, and f(x) have radii of convergence R_P , R_Q , and R_f , respectively, then there is a generalized power series solution

$$y(x) = (x - x_0)^r \sum_{n=0}^{\infty} a_n (x - x_0)^n, \qquad R = \min\{R_P, R_Q, R_f\},$$

for some constant r.

An ODE with a generalized power series solution

Example 5

Solve the homogeneous differential equation 2xy'' + y' + y = 0.

Applications of the power series method

Examples from physics and engineering

- **Cauchy-Euler equation:** $x^2y'' + axy' + by = 0$. Arises when solving Laplace's equation in polar coordinates.
- Hermite's equation: y'' 2xy' + 2py = 0. Used for modeling simple harmonic oscillators in quantum mechanics.
- **Legendre's equation:** $(1 x^2)y'' 2xy' + p(p+1)y = 0$. Used for modeling spherically symmetric potentials in the theory of Newtonian gravitation and in electricity & magnetism (e.g., the wave equation for an electron in a hydrogen atom).
- Bessel's equation: $x^2y'' + xy' + (x^2 p^2)y = 0$. Used for analyzing vibrations of a circular drum.
- Airy's equation: $y'' k^2 xy = 0$. Models the refraction of light.
- Chebyshev's equation: $(1 x^2)y'' xy' + p^2y = 0$. Arises in numerical analysis techniques.