Lecture 4.3: Mixing problems with two tanks

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Motivation

Example

Suppose Tank A has 30 gallons of water containing 55 ounces of dissolved salt, and Tank B has 20 gallons of water containing 26 ounces of dissolved salt. Moreover:

- Water with salt concentration $1 \mathrm{oz} / \mathrm{gal}$ flows into Tank A at a rate of $1.5 \mathrm{gal} / \mathrm{min}$.
- Water with salt concentration $3 \mathrm{oz} / \mathrm{gal}$ flows into Tank B at a rate of $1 \mathrm{gal} / \mathrm{min}$.
- Water flows from Tank A to Tank B at a rate of $3 \mathrm{gal} / \mathrm{min}$.
- Water flows from Tank B to Tank A at a rate of $1.5 \mathrm{gal} / \mathrm{min}$.
- Water drains from Tank B at a rate of $2.5 \mathrm{gal} / \mathrm{min}$.

Find equations $x_{1}(t)$ and $x_{2}(t)$ governing the amount of salt in Tanks A and B.

The steady-state solution

Example (cont.)

We derived an initial value problem $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}, \mathbf{x}(0)=\mathbf{x}_{0}$:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-0.1 & 0.075 \\
0.1 & -0.2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
55 \\
26
\end{array}\right] .
$$

Since this is inhomogeneous, the general solution will have the form $\mathbf{x}(t)=\mathbf{x}_{h}(t)+\mathbf{x}_{p}(t)$.

Changing variables

Example (cont.)

We derived an initial value problem $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}, \mathbf{x}(0)=\mathbf{x}_{0}$:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-0.1 & 0.075 \\
0.1 & -0.2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
55 \\
26
\end{array}\right] .
$$

which has steady-state solution $\mathbf{x}_{s s}=\left[\begin{array}{l}42 \\ 36\end{array}\right]$.

Summary

To solve the inhomogeneous initial value problem $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}, \mathbf{x}(0)=\mathbf{x}_{0}$:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-0.1 & 0.075 \\
0.1 & -0.2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
55 \\
26
\end{array}\right]
$$

we take the following steps:

1. Find the steady-state solution, $\mathbf{x}_{s s}=\left[\begin{array}{l}42 \\ 36\end{array}\right]$.
2. Change variables to convert the system into a homogeneous system, $\mathbf{y}^{\prime}=\mathbf{A y}$, $\mathbf{y}(0)=\mathbf{y}_{0}$:

$$
\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-0.1 & 0.075 \\
0.1 & -0.2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
13 \\
-10
\end{array}\right]
$$

3. In the next lecture we will learn how to find the solution $\mathbf{y}(t)$ to this homogeneous system. Our general solution will be

$$
\mathbf{x}(t)=\mathbf{x}_{h}(t)+\mathbf{x}_{p}(t)=\mathbf{y}(t)+\mathbf{x}_{s s} .
$$

