# Lecture 4.4: Solving $2 \times 2$ homogeneous systems of ODEs 

Matthew Macauley<br>Department of Mathematical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

## A motivating example

## Example 0

Consider the following homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}, \mathbf{x}(0)=\mathbf{x}_{0}$ :

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

The role of eigenvectors and eigenvalues

## Theorem

If $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ solves $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$.

## Solving $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ : The big ideas

## Theorem

The general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is a two-parameter family $\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)$. Therefore, if $\mathbf{A}$ has distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$ and eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, then the general solution to $\mathbf{x}^{\prime}=\mathbf{A x}$ is

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

Not surprisingly, the initial condition $\mathbf{x}(0)=\mathbf{x}_{0}=\left[\begin{array}{l}a \\ b\end{array}\right]$ determines a unique particular solution.

## Case 1a: distinct, real (negative) eigenvalues

## Example 1a (revisited)

Consider the following homogeneous system $\mathbf{y}^{\prime}=\mathbf{A y}, \mathbf{y}(0)=\mathbf{y}_{0}$ :

$$
\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-0.1 & 0.075 \\
0.1 & 0.2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
13 \\
-10
\end{array}\right]
$$

It is eaily verified that the eigenvalues and eigenvectors are

$$
\lambda_{1}=-0.25, \quad \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] ; \quad \lambda_{2}=-0.05, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

## Phase portraits

## Example 1a (cont.)

The general solution to our system $\mathbf{y}^{\prime}=\mathbf{A y}, \mathbf{y}(0)=\mathbf{y}_{0}$ is the two-parameter family

$$
\mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=C_{1} e^{-0.25 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+C_{2} e^{-0.05 t}\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

The phase portrait of this system is the plot $y_{2}(t)$ vs. $y_{1}(t)$.

