Lecture 4.5: Phase portraits with real eigenvalues

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Last time: distinct negative eigenvalues

Example 1a

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-0.1 & 0.075 \\ 0.1 & 0.2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. It is easily verified that the eigenvalues and eigenvectors of \mathbf{A} are

$$
\lambda_{1}=-0.25, \quad \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] ; \quad \lambda_{2}=-0.05, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

Thus, the general solution is $\mathbf{x}(t)=C_{1} e^{-0.25 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+C_{2} e^{-0.05 t}\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Eigenvalues of opposite sign

Example 1b

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
It is eaily verified that the eigenvalues and eigenvectors are

$$
\lambda_{1}=3, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; \quad \lambda_{2}=-1, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

Thus, the general solution is $\mathbf{x}(t)=C_{1} e^{3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.

Distinct positive eigenvalues

Example 1c

Consider a homogeneous system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where the eigenvalues and eigenvectors of A are

$$
\lambda_{1}=1, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; \quad \lambda_{2}=5, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

Thus, the general solution is $\mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+C_{2} e^{5 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.

Summary

When $\lambda_{1} \neq \lambda_{2}$ are real

If $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ and \mathbf{A} has real eigenvalues $\lambda_{1} \neq \lambda_{2}$, and eigenvectors v_{1}, v_{2}, then the general solution is $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$.

We can plot the phase portrait (x_{2} vs. x_{1}) by first drawing the "eigenvector lines".

- If $\lambda_{i}>0$, then the solutions move away from $(0,0)$ because $\lim _{t \rightarrow \infty}\left|C e^{\lambda t} \mathbf{v}\right|=\infty$.
- If $\lambda_{i}<0$, then the solutions move torward $(0,0)$ because $\lim _{t \rightarrow \infty}\left|C e^{\lambda t} \mathbf{v}\right|=0$. The solution curves off these lines "bend" depending on how different λ_{1} and λ_{2} are.

