Lecture 4.6: Phase portraits with complex eigenvalues

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Complex-valued solutions

Lemma

Suppose $\mathbf{x}_{1}(t)=\mathbf{u}(t)+i \mathbf{w}(t)$ solves $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$. Then so do $\mathbf{u}(t)$ and $\mathbf{w}(t)$.

Re-writing the general solution

Example 2a

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{2} & 1 \\ -1 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. It is easily verified that the eigenvalues and eigenvectors of \mathbf{A} are

$$
\lambda_{1}=-\frac{1}{2}+i, \quad \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
i
\end{array}\right] ; \quad \lambda_{2}=-\frac{1}{2}-i, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] .
$$

Thus, the general solution is $\mathbf{x}(t)=C_{1} e^{\left(-\frac{1}{2}+i\right) t}\left[\begin{array}{l}1 \\ i\end{array}\right]+C_{2} e^{\left(-\frac{1}{2}-i\right) t}\left[\begin{array}{c}1 \\ -i\end{array}\right]$.

Phase portraits

Example 2a (cont.)

Let's plot the general solution $\mathbf{x}(t)=C_{1} e^{-t / 2}\left[\begin{array}{c}\cos t \\ -\sin t\end{array}\right]+C_{2} e^{-t / 2}\left[\begin{array}{c}\sin t \\ \cos t\end{array}\right]$.

Purely imaginary eigenvalues

Example 2a

Consider the following initial value problem $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & -\frac{5}{4} \\ 2 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.
It is easily verified that the eigenvalues and eigenvectors of \mathbf{A} are

$$
\lambda_{1}=\frac{3}{2} i, \quad \mathbf{v}_{1}=\left[\begin{array}{c}
5 \\
2-6 i
\end{array}\right] ; \quad \lambda_{2}=-\frac{3}{2} i, \quad \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
2+6 i
\end{array}\right] .
$$

Thus, the general solution is $\mathbf{x}(t)=C_{1} e^{\frac{3}{2} i t}\left[\begin{array}{c}5 \\ 2-6 i\end{array}\right]+C_{2} e^{-\frac{3}{2} i t}\left[\begin{array}{c}5 \\ 2+6 i\end{array}\right]$.

Concluding remarks

Summary

Suppose we wish to solve $\mathbf{x}^{\prime}=\mathbf{A x}$, where $\lambda_{1,2}=a \pm b i, b \neq 0$.
We have two solutions: $\mathbf{x}_{1}(t)=e^{(a+b i) t} \mathbf{v}_{1}$ and $\mathbf{x}_{2}(t)=e^{(a-b i) t} \mathbf{v}_{2}$.
Take one of these (say $\mathbf{x}_{1}(t)$), and use Euler's formula to write it as $\mathbf{x}_{1}(t)=\mathbf{u}(t)+i \mathbf{w}(t)$.

The general solution is $\mathbf{x}(t)=C_{1} \mathbf{u}(t)+C_{2} \mathbf{w}(t)$.
The phase portrait will have ellipses, that are

- spiraling inward if $a<0$;
- spiraling outward if $a>0$;
- stable if $a=0$.

