Lecture 4.7: Phase portraits with repeated eigenvalues

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Repeated eigenvalue, 2 eigenvectors

Example 3a

Consider the following homogeneous system

$$\mathbf{n} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Repeated eigenvalue, 1 eigenvector

Example 3b

Consider the following homogeneous system

$$\mathbf{n} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

How to find a 2nd solution

Example 3b

Consider the following homogeneous system
$$\begin{bmatrix} x_1'\\ x_2' \end{bmatrix} = \begin{bmatrix} -1 & -1\\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$
.
Since $\lambda_1 = -2$ and $\mathbf{v}_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}$, we have a solution $\mathbf{x}_1(t) = e^{-2t} \begin{bmatrix} 1\\ 1 \end{bmatrix}$.

Phase portrait

Example 3b

Consider the following homogeneous system
$$\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
.
The general solution is $\mathbf{x}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{-2t} \left(t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$.