Lecture 4.7: Phase portraits with repeated eigenvalues

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Repeated eigenvalue, 2 eigenvectors

Example 3a

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Repeated eigenvalue, 1 eigenvector

Example 3b

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

How to find a 2 nd solution

Example 3b

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Since $\lambda_{1}=-2$ and $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, we have a solution $\mathbf{x}_{1}(t)=e^{-2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Phase portrait

Example 3b

Consider the following homogeneous system $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
The general solution is $\mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2} e^{-2 t}\left(t\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$.

