Lecture 4.8: Stability of phase portraits

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Summary of phase portraits

Suppose $\mathbf{x}' = \mathbf{A}\mathbf{x}$, with det $\mathbf{A} \neq 0$	
$ \lambda_1 > \lambda_2 > 0 $	
• $\lambda_1 < \lambda_2 < 0$	
$\bullet \ \lambda_1 < 0 < \lambda_2$	
$\lambda_1 = \lambda_2$	
• $\lambda = a \pm bi$	
■ a > 0	
■ <i>a</i> < 0	
■ <i>a</i> = 0	

A 1-parameter family

Example

Consider the following homogeneous system $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} \alpha & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

The whole picture

A 2-parameter family

Suppose the characteristic equation of $\boldsymbol{\mathsf{A}}$ is

$$\lambda^2 - (\operatorname{tr} \mathbf{A})\lambda + \det \mathbf{A} = \lambda^2 - p\lambda + q = 0$$

Then the eigenvalues of **A** are $\lambda = \frac{p \pm \sqrt{p^2 - 4q}}{2}$

What if det $\mathbf{A} = 0$?

Higher order systems

An example: the SIR model

Consider an epidemic that spreads through a population, where

- S(t) = # susceptible people at time t;
- I(t) = # infected people at time t;
- R(t) = # recovered people at time t.

Initially, there are N susceptible (uninfected) people.