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Summary of phase portraits
Suppose x’ = Ax, with det A # 0
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A 1-parameter family

Example

/
Consider the following homogeneous system X% = “ 2 X
X2
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The whole picture

A 2-parameter family

Suppose the characteristic equation of A is
M — (trA)A+detA=X —pA+qg=0
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Then the eigenvalues of A are \ =
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What if det A = 07
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Higher order systems

An example: the SIR model

Consider an epidemic that spreads through a population, where
m S(t) = # susceptible people at time t;
m /(t) = # infected people at time t;
m R(t) = # recovered people at time t.

Initially, there are N susceptible (uninfected) people.
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