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Variation of parameters for non-systems

Variation of parameters is a “last resort” method for finding a particular solution, yp(t).

First order ODE: y ′ + p(t)y = f (t)

(i) Solve y ′h + p(t)yh = 0: get yh(t) = Cy1(t) = Ce−
∫
p(t) dt .

(ii) Find a particular solution of the form

yp(t) = v(t)y1(t) = e−
∫
p(t) dt

∫
f (t)e

∫
p(t) dtdt.

Second order ODE: y ′′ + p(t)y ′ + q(t)y = f (t)

(i) Solve y ′′h + p(t)y ′h + q(t)yh = 0: get yh(t) = C1y1(t) + C2y2(t).

(ii) Find a particular solution of the form

yp(t) = v1(t)y1(t) + v2(t)y2(t).

It turns out that

v1(t) =

∫ −y2(t)f (t) dt

y1(t)y ′2(t) − y ′1(t)y2(t)
, v2(t) =

∫
y1(t)f (t) dt

y1(t)y ′2(t) − y ′1(t)y2(t)
.

These methods always work, assuming that you can find yh(t), and evaluate the integrals.
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Variation of parameters for systems

2 × 2 system: x ′(t) = A(t)x(t) + b(t)

(i) Solve x ′h = Axh: get

xh(t) = C1x1(t) + C2x2(t) = C1

[
x11(t)
x12(t)

]
+ C2

[
x21(t)
x22(t)

]
=

[
x11(t) x21(t)
x12(t) x22(t)

] [
C1

C2

]
︸ ︷︷ ︸

Xh(t)C

.

(ii) Find a particular solution of the form xp(t) = Xh(t)v(t):

xp(t) = v1(t)x1(t)+v2(t)x2(t) = v1(t)

[
x11(t)
x12(t)

]
+v2(t)

[
x21(t)
x22(t)

]
=

[
x11(t) x21(t)
x12(t) x22(t)

][
v1(t)
v2(t)

]
︸ ︷︷ ︸

Xh(t)v(t)

.
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A specific example

Example 1

Solve the initial value problem x ′ =

[
1 −4
2 −5

]
x +

[
10 cos t

2e−t

]
, x(0) =

[
10
4

]
.
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A general example

Example 2

Solve y ′′ + p(t)y ′ + q(t)y = f (t) by turning it into a 2 × 2 system first.
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Summary

The variation of parameters method finds a particular solution of an ODE, of the form:

(i) yp(t) = v(t)y1(t) (1st order)
(ii) yp(t) = v1(t)y1(t) + v2(t)y2(t) (2nd order)
(iii) xp(t) = Xh(t)v(t) (n × n system).

We saw here that xp(t) = Xh(t)v(t) = Xh(t)

∫
X−1
h (t)b(t) dt.

A second order ODE y ′′ + p(t)y ′ + q(t)y = f (t) can be written as a system by setting
x1 = y , x2 = y ′, to get [

x ′1
x ′2

]
=

[
0 1

−q(t) −p(t)

] [
x1

x2

]
+

[
0

f (t)

]
.

Remarks

This is the only way we know how to find a particular solution of a non-automonous
ODE, e.g., x ′ = Ax + b(t).

This method also works if A(t) is non-constant, assuming that we can actually find
xh(t) = C1x1(t) + C2x2(t).

Such a solution is only defined where the Wronskian

W [x1(t), x2(t)] := det

[
x11(t) x21(t)
x12(t) x22(t)

]
, or W [y1(t), y2(t)] := det

[
y1(t) y2(t)
y ′1(t) y ′2(t)

]
is non-zero.
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