Lecture 5.1: What is a Laplace transform?

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Overview

Applications

Laplace transforms are:

- Used to solve and analyze linear ODEs.
- Useful when the forcing term is discontinuous.

Definition and example

Definition

Suppose $f(t)$:
■ is defined for $0<t<\infty$;

- doesn't grow too fast: $|f(t)| \leq C e^{a t}$ for some C and a.

Then the Laplace transform of f is the function $\mathcal{L}(f)$, where

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Example 1

Find the Laplace transform of $f(t)=e^{a t}$.

More examples

Example 2

Find the Laplace transform of $f(t)=t$.

More examples

Other common functions

- $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$;
- $\mathcal{L}\{\sin b t\}=\frac{b}{s^{2}+b^{2}}$;
- $\mathcal{L}\{\cos b t\}=\frac{s}{s^{2}+b^{2}} ;$

Piecewise functions

Example 3

Compute the transform of the piecewise function $f(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & t \geq 1\end{cases}$

More examples

Example 4

Compute the transform of the piecewise function $f(t)= \begin{cases}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{cases}$

