Lecture 5.1: What is a Laplace transform?

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Overview

Applications

Laplace transforms are:

- Used to solve and analyze linear ODEs.
- Useful when the forcing term is discontinuous.

Definition and example

Definition

Suppose f(t):

- is defined for $0 < t < \infty$;
- doesn't grow too fast: $|f(t)| \leq Ce^{at}$ for some C and a.

Then the Laplace transform of f is the function $\mathcal{L}(f)$, where

$$\mathcal{L}{f(t)}(s) = \int_0^\infty f(t) e^{-st} dt.$$

Example 1

Find the Laplace transform of $f(t) = e^{at}$.

More examples

Example 2

Find the Laplace transform of f(t) = t.

More examples

Other common functions

$$\mathcal{L}\lbrace t^n\rbrace = \frac{n!}{s^{n+1}};$$
$$\mathcal{L}\lbrace \sin bt\rbrace = \frac{b}{s^2 + b^2};$$
$$\mathcal{L}\lbrace \cos bt\rbrace = \frac{s}{s^2 + b^2};$$

Piecewise functions

Example 3

Compute the transform of the piecewise function $f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$

More examples

Example 4

Compute the transform of the piecewise function $f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$