Lecture 5.2: Properties and applications of the Laplace transform

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Laplace transform fundamentals

Two key properties

- \mathcal{L} is linear.
- \mathcal{L} turns derivatives into multiplication.

Useful shortcuts

More properties

Suppose we know $F(s) = \mathcal{L}{f(t)}$. Then: (i) $\mathcal{L}{e^{at}f(t)} = F(s-a)$; (ii) $\mathcal{L}{tf(t)} = -F'(s)$; (iii) $\mathcal{L}{t^nf(t)} = (-1)^n \cdot \frac{d^n}{ds^n}F(s)$.

Examples

- (i) Compute the Laplace transform of $f(t) = e^{2t} \cos 3t$.
- (ii) Compute the Laplace transform of $f(t) = t^2 e^{3t}$.

Using the Laplace transform to solve ODEs

Example

Sove the initial value problem $y'' - y = e^{2t}$, y(0) = 0, y'(0) = 1.

Inverse Laplace transforms

Example

Compute
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+4s+13}\right\}$$
.

Comparison of old vs. new methods

Structure of the solution to an ODE

A generic example

Consider an initial value problem ay'' + by' + cy = f(t), $y(0) = x_0$, $y'(0) = v_0$.