# Lecture 5.6: Convolution 

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

## Introduction

## Motivation

Laplace transforms are hard to compute. We like formulas that allow us to compute new ones from old. For example,

$$
\mathcal{L}\left\{e^{c t} f(t)\right\}=F(s-c), \quad \mathcal{L}\{f(t)+g(t)\}=F(s)+G(s) .
$$

Question: Is there a formula for $\mathcal{L}\{f(t) g(t)\}$ ?

## Next best thing

There is a multiplicative formula for the inverse Laplace transform:

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=f(t) * g(t):=\int_{0}^{t} f(u) g(t-u) d u
$$

## Practice with convolution

## Definition

The convolution of $f(t)$ and $g(t)$ is the function $(f * g)(t):=\int_{\mathbb{R}} f(u) g(t-u) d u$.

## Properties

- $f * g=g * f$;
- $f *(g * h)=(f * g) * h$.


## Examples

1. Compute $t^{2} * t=$
2. Compute $f(t) * 1=$

## Convolutions unrelated to Laplace transforms

## Example

Suppose a company dumps radioactive waste at a rate $f(t)$ that decays exponentially with rate constant $k$. Determine how much waste remains at time $t$.

## Back to (inverse) Laplace transforms

Theorem
If $\mathcal{L}\{f(t)\}=F(s)$ and $\mathcal{L}\{g(t)\}=G(s)$, then

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=f(t) * g(t)=\int_{0}^{t} f(u) g(t-u) d u .
$$

