Lecture 6.1: Introduction to Fourier series

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

Motivation

Every "well-behaved" periodic (think: sound wave) function can be decomposed into sine and cosine waves. We'll learn how to do this.

An analogy

\mathbb{R}^{n} is a set of vectors. We can freely:

- add \& subtract vectors,
- multiply vectors by scalars,
- measure the lengths of vectors; $\|\mathbf{v}\|:=\sqrt{\mathbf{v} \cdot \mathbf{v}}$,
- measure the angles between vectors; $\measuredangle(\mathbf{v}, \mathbf{w}):=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)$,
- project vectors onto unit vectors: $\operatorname{Proj}_{\mathbf{n}} \mathbf{v}:=(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}$.

An analogy

Questions

The standard unit basis vectors of \mathbb{R}^{2} are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Let $\mathbf{v}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$.

1. How long is \mathbf{v} in the x-direction?
2. How long is v in the y-direction?
3. How long is \mathbf{v} in the "northeast direction"?

An orthogonal basis of \mathbb{R}^{n}

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is orthonormal if they satisfy: $\mathbf{v}_{i} \cdot \mathbf{v}_{j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}$

The vector space of periodic functions

Let $\mathcal{P}_{2 \pi}$ be the set of 2π-periodic piecewise continuous functions:

$$
\mathcal{P}_{2 \pi}=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(x+2 \pi)=f(x), f \text { is piecewise contin. }\}
$$

Definition

The inner product ("generalized dot product") on $\mathcal{P}_{2 \pi}$ is defined to be:

$$
\langle f(x), g(x)\rangle:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

The vector space of periodic functions

Amazing fact

With respect to our inner product $\langle f, g\rangle:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$ on $\mathcal{P}_{2 \pi}$, the set

$$
\mathcal{B}_{2 \pi}=\left\{\begin{array}{llll}
\frac{1}{\sqrt{2}}, & \cos x, & \cos 2 x, & \cos 3 x, \\
& \cdots \\
\sin x, & \sin 2 x, & \sin 3 x, & \cdots
\end{array}\right\}
$$

is an orthonormal basis for $\mathcal{P}_{2 \pi}$!

Formula for the Fourier coefficients

Theorem

Let $f(x)$ be a piecewise continuous 2π-periodic function. We can write

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x,
$$

where

$$
\begin{aligned}
& a_{n}=\langle f(x), \cos n x\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\langle f(x), \sin n x\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Periodic functions with other periods

Remark

Let $f(x)$ be a piecewise continuous $2 L$-periodic function. We can write

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{\pi n x}{L}\right)+b_{n} \sin \left(\frac{\pi n x}{L}\right),
$$

where

$$
\begin{aligned}
& a_{n}=\left\langle f(x), \cos \left(\frac{\pi n x}{L}\right)\right\rangle=\frac{1}{L} \int_{-\pi}^{\pi} f(x) \cos \left(\frac{\pi n x}{L}\right) d x \\
& b_{n}=\left\langle f(x), \sin \left(\frac{\pi n x}{L}\right)\right\rangle=\frac{1}{L} \int_{-\pi}^{\pi} f(x) \sin \left(\frac{\pi n x}{L}\right) d x
\end{aligned}
$$

