Lecture 6.4: Complex Fourier series

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Introduction

A different basis for the set of 2π-periodic functions

Recall that the set

$$
\mathcal{B}_{2 \pi}=\left\{\begin{array}{llll}
\frac{1}{\sqrt{2}}, & \cos x, & \cos 2 x, & \cos 3 x, \\
& \sin x, & \sin 2 x, & \sin 3 x, \\
& \ldots
\end{array}\right\}
$$

is a basis for $\mathcal{P}_{2 \pi}$. Here is another basis:

$$
\mathcal{B}_{2 \pi}^{\prime}=\left\{\begin{array}{cccc}
1, & e^{i x}, & e^{2 i x}, & e^{3 i x}, \\
& e^{-i x}, & e^{-2 i x}, & e^{-3 i x}, \\
& \ldots
\end{array}\right\} .
$$

Moreover, this basis is orthonormal with respect to the inner product

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

Formulas for the Fourier coefficients

Complex Fourier series

If $f(x)$ is 2π-periodic, then it can be written as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i n x}+c_{-n} e^{-i n x}\right)
$$

where

$$
c_{0}=\langle f(x), 1\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \quad c_{n}=\left\langle f(x), e^{i n x}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

From the real to the complex Fourier series

Proposition

The complex Fourier coefficients of $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$ are

$$
c_{n}=\frac{a_{n}-i b_{n}}{2}, \quad c_{-n}=\frac{a_{n}+i b_{n}}{2}
$$

From the complex to the real Fourier series

Proposition

The real Fourier coefficients of $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ are

$$
a_{n}=c_{n}+c_{-n}, \quad b_{n}=i\left(c_{n}-c_{-n}\right) .
$$

Computations

Example 1: square wave

Find the complex Fourier series of $f(x)=\left\{\begin{array}{ll}1, & 0 \leq x<\pi \\ -1, & \pi \leq x<2 \pi\end{array}\right.$ are

Computations

Example 2

Compute the complex Fourier series of the 2π-periodic extension of the function e^{x} defined on ($-\pi, \pi$].

