Lecture 7.2: Different boundary conditions

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Last time: Example 1a

The solution to the following IVP/BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x) .
$$

is $u(x, t)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}} \sin n x e^{-c^{2} n^{2} t}$.

This time: Example 1b

Solve the following IVP/BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u(\pi, t)=32, \quad u(x, 0)=x(\pi-x)+32
$$

Last time: Example 1a

The solution to the following IVP/BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x)
$$

is $u(x, t)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{\pi n^{3}} \sin n x e^{-c^{2} n^{2} t}$.

This time: Example 1c

Solve the following IVP/BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=32, \quad u(\pi, t)=42, \quad u(x, 0)=x(\pi-x)+32+\frac{10}{\pi} x
$$

A familiar theme

Summary

To solve the initial / boundary value problem

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=a, \quad u(\pi, t)=b, \quad u(x, 0)=h(x),
$$

first solve the related homogeneous problem, then add this to the steady-state solution $u_{s s}(x, t)=a+\frac{b-a}{\pi} x$.

von Neumann boundary conditions (type 2)

Example 2

Solve the following IVP/BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u_{x}(0, t)=u_{x}(\pi, t)=0, \quad u(x, 0)=x(\pi-x) .
$$

von Neumann boundary conditions (type 2)

Example 2 (cont.)

The general solution to the following BVP for the heat equation:

$$
u_{t}=c^{2} u_{x x}, \quad u_{x}(0, t)=u_{x}(\pi, t)=0, \quad u(x, 0)=x(\pi-x) .
$$

is $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x e^{-c^{2} n^{2} t}$. Now, we'll solve the remaining IVP.

