Lecture 7.3: The transport equation

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Motivation

Some common one-dimensional PDEs

We've seen the heat equation: $u_{t}=c^{2} u_{x x}$. In this lecture, we will introduce the transport equation, from which we will derive the wave equation: $u_{t t}=c^{2} u_{x x}$.

Transport left

Example 1

Consider the following PDE involving a function $u(x, t)$:

$$
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=0 .
$$

Transport right

Example 2

Consider the following PDE involving a function $u(x, t)$:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

The wave equation

Example 3

Consider the following PDE involving a function $u(x, t)$:

$$
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u=\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

The two most common one-dimensional PDEs

Summary

Let $u(x, t)$ be a function of position x and time t. Then

- the heat equation is $u_{t}=c^{2} u_{x x}$,
- the wave equation is $u_{t t}=c^{2} u_{x x}$.

