Lecture 7.4: The wave equation

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

The goal

The wave equation
Recall that the wave equation is $u_{t t}=c^{2} u_{x x}$. In this lecture, we will impose boundary and initial conditions and solve the resulting IVP/BVP.

Finding the general solution to the BVP

Example 3

Solve the following IVP/BVP for the wave equation:

$$
u_{t t}=c^{2} u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x), \quad u_{t}(x, 0)=1
$$

Solving the initial value problem

Example 3 (cont.)

The general solution to the following BVP for the wave equation:

$$
u_{t t}=c^{2} u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x), \quad u_{t}(x, 0)=1
$$

is $u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos c n t+b_{n} \sin c n t\right) \sin n x$. Now, we'll solve the remaining IVP.

