Lecture 7.6: Laplace's equation

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Overview

Definition

A function $u(x_1, \ldots, x_n)$ is harmonic if any of the following conditions hold:

$$\nabla^2 u := \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2} = 0,$$

• u is a steady-state solution to the heat equation $u_t = \nabla^2 u$ (for some BCs),

■ the graph of *u* is "as flat as possible"

The PDE $\nabla^2 u = 0$ is called Laplace's equation.

Solving Laplace's equation

Example 1a

Solve the following BVP for Laplace's equation:

$$u_{xx} + u_{yy} = 0,$$
 $u(0, y) = u(x, 0) = u(\pi, y) = 0,$ $u(x, \pi) = x(\pi - x).$

Solving Laplace's equation

Example 1b

Solve the following BVP for Laplace's equation:

$$u_{xx} + u_{yy} = 0,$$
 $u(0, y) = u(x, 0) = u(x, \pi) = 0,$ $u(\pi, y) = y(\pi - y).$

Solving Laplace's equation

Example 1c

Solve the following BVP for Laplace's equation:

 $u_{xx} + u_{yy} = 0,$ u(0, y) = u(x, 0) = 0, $u(x, \pi) = x(\pi - x),$ $u(\pi, y) = y(\pi - y).$