Lecture 7.6: Laplace's equation

Matthew Macauley
Department of Mathematical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Overview

Definition

A function $u\left(x_{1}, \ldots, x_{n}\right)$ is harmonic if any of the following conditions hold:

- $\nabla^{2} u:=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=0$,
- u is a steady-state solution to the heat equation $u_{t}=\nabla^{2} u$ (for some BCs),
- the graph of u is "as flat as possible"

The PDE $\nabla^{2} u=0$ is called Laplace's equation.

Solving Laplace's equation

Example 1a

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=u(\pi, y)=0, \quad u(x, \pi)=x(\pi-x)
$$

Solving Laplace's equation

Example 1b

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=u(x, \pi)=0, \quad u(\pi, y)=y(\pi-y)
$$

Solving Laplace's equation

Example 1c

Solve the following BVP for Laplace's equation:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(x, 0)=0, \quad u(x, \pi)=x(\pi-x), \quad u(\pi, y)=y(\pi-y)
$$

