Lecture 7.8: The two-dimensional wave equation

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Overview

Modeling with the wave equation

Consider a vibrating square membrane of length L, where the edges are held fixed. If $u(x, y, t)$ is the (vertical) displacement, then u satisfies the following IVP/BVP for the wave equation:

$$
\begin{aligned}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), \quad u(x, 0, t) & =u(0, y, t)=u(x, L, t)=u(L, x, t)=0 \\
u(x, y, 0) & =h_{1}(x, y), \quad u_{t}(x, y, 0)=h_{2}(x, y)
\end{aligned}
$$

The functions $h_{1}(x, y)$ and $h_{2}(x, y)$ are initial displacement and velocity, respectively.

Finding the general solution

Example 3

Solve the following IVP/BVP for the wave equation:

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), & u(x, 0, t)=u(0, y, t)=u(x, \pi, t)=u(\pi, x, t)=0 \\
u(x, y, 0)=x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=0 .
\end{array}
$$

Solving the resulting IVP

Example 3 (cont.)

The general solution to the following IVP/BVP for the wave equation:

$$
\begin{array}{ll}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), & u(x, 0, t)=u(0, y, t)=u(x, \pi, t)=u(\pi, x, t)=0 \\
u(x, y, 0)=x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=0 .
\end{array}
$$

is $u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} b_{m n} \sin m x \sin n y \cos \left(c \sqrt{m^{2}+n^{2}} t\right)$.

