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Epidemiology

The SIR model

Consider an epidemic that spreads through a population, where

S(t) = # susceptible people at time t;

I (t) = # infected people at time t;

R(t) = # recovered people at time t.

Initially, there are N susceptible (uninfected) people.
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Other epidemic models

SI model (e.g., herpes, HIV).{
S ′ = −αSI
I ′ = αSI

S I
α

SIS model. Disease w/o immunity (e.g., chlamydia).

{
S ′ = −αSI + γI

I ′ = αSI − γI
S I

α

γ

SIRS model. Finite-time immunity (e.g., common cold).
S ′ = −αSI + δR

I ′ = αSI − γI

R′ = γI − δR

S I R
α γ

δ
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Other epidemic models

SEIR model. E = exposed (incubation period, no symptoms).


S ′ = −αSI
E ′ = αSI − εE

I ′ = εE − γI

R′ = γI

S E I R
α ε γ

SIR model with birth and death rate.


S ′ = −αSI + βS − µS

I ′ = αSI − γI − µI

R′ = γI − µR

β

S I R
α γ

µ µ µ
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Population dynamics: competing species

Competitive Lotka–Volterra equations

Consider two species competing for a limited food supply.

X (t) = population of Species 1;

Y (t) = population of Species 2.

Assume that each species, without the other, would grow logistically.
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Population dynamics: predator–prey

Classical Lotka–Volterra equations

Consider two species, one of which depends on the other as a food source:

X (t) = population of the prey.

Y (t) = population of the predator.

Assume that in the absense of the other species:

the prey would grow exponentially;

the predator would decay exponentially.
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Population dynamics: predator–prey

Modified Lotka–Volterra equations

Consider two species, one of which depends on the other as a food source:

X (t) = population of the prey.

Y (t) = population of the predator.

Assume that in the absense of the other species:

the prey would grow logistically;

the predator would decay exponentially.
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Other population models

Immune system vs. infective agent

Let X (t) = population of immune cells, Y (t) = level of infection:{
X ′ = rY − sXY

Y ′ = uY − vXY

−sXY : negative effect on immune system from fighting

−vXY : limited effect of immune system in fighting

rY : immune response is proportionate to infection level

Mutualism

Let X (t) = population of sharks, Y (t) = population of feeder fish:{
X ′ = rX (1 − X/M) + sXY

Y ′ = −uY + vXY
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