Lecture 8.2: Linearization and steady-state analysis

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Recall: Competitive Lotka-Volterra equations

Example 1

Consider the following model of two species competing for a limited food supply:

$$
\left\{\begin{array}{l}
X^{\prime}=X(1-X-Y) \\
Y^{\prime}=Y(.75-Y-.5 X)
\end{array}\right.
$$

Nullclines

Definition

A nullcline (or isocline with $c=0$) is a line or curve where $X^{\prime}=0$ or $Y^{\prime}=0$.

Example 1 (cont.)

Let's find the nullclines of our system:

$$
\left\{\begin{array}{l}
X^{\prime}=X(1-X-Y) \\
Y^{\prime}=Y(.75-Y-.5 X)
\end{array}\right.
$$

Linearization

Example 1 (cont.)

The 4 steady-states of the following system

$$
\left\{\begin{array}{l}
X^{\prime}=X(1-X-Y) \\
Y^{\prime}=Y(.75-Y-.5 X)
\end{array}\right.
$$

are $\left(X^{*}, Y^{*}\right)=(0,0),(1,0),(0, .75),(.5, .5)$. Let's linearize at $\left(X^{*}, Y^{*}\right)=(0,0)$.

Linearization

Example 1 (cont.)

Let's linearize this system at a non-zero critical point $\left(X^{*}, Y^{*}\right)$.

$$
\left\{\begin{array}{l}
X^{\prime}=X(1-X-Y) \\
Y^{\prime}=Y(.75-Y-.5 X)
\end{array}\right.
$$

The first step is to change variables: let $P=X-X^{*}$ and $Q=Y-Y^{*}$.

Linearization

Example 1 (cont.)

At a general critical point $\left(X^{*}, Y^{*}\right)$ we changed variables $(P, Q)=\left(X-X^{*}, Y-Y^{*}\right)$ to get:

$$
\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1-2 X^{*}-Y^{*} & -X^{*} \\
-.5 Y^{*} & .75-2 Y^{*}-.5 X^{*}
\end{array}\right]\left[\begin{array}{c}
P \\
Q
\end{array}\right]+\left[\begin{array}{c}
\text { non-linear } \\
\text { terms }
\end{array}\right]
$$

Recall that our steady-states are $\left(X^{*}, Y^{*}\right)=(0,0),(1,0),(0, .75),(.5, .5)$.

Analyzing a nonlinear system

Example 2

Consider the following model of two species competing for a limited food supply:

$$
\left\{\begin{array}{l}
X^{\prime}=X(1-X-Y) \\
Y^{\prime}=Y(.8-.6 Y-X)
\end{array}\right.
$$

It is easy to check that there are four steady-state solutions: $(0,0),(1,0),\left(0, \frac{4}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right)$.

Four types of dynamics

Competitive Lotka-Volterra equations

Consider the following model of two species competing for a limited food supply:

$$
\left\{\begin{array}{l}
X^{\prime}=X\left(\varepsilon_{1}-\sigma_{1} X-\alpha_{1} Y\right) \\
Y^{\prime}=Y\left(\varepsilon_{2}-\sigma_{2} Y-\alpha_{2} X\right)
\end{array}\right.
$$

- X-nullclines: $X=0$ and $\varepsilon_{1}-\sigma_{1} X-\alpha_{1} Y=0$.
- Y-nullclines: $Y=0$ and $\varepsilon_{2}-\sigma_{2} Y-\alpha_{2} X=0$.

When might linearization fail?

Consider a 2×2 matrix with characteristic equation $\lambda^{2}-(\operatorname{tr} \mathbf{A}) \lambda+\operatorname{det} \mathbf{A}=\lambda^{2}-p \lambda+q=0$.

