Lecture 8.3: Predator-prey models

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 2080, Differential Equations

Lotka-Volterra equations

Example 1

Consider the following system: $\left\{\begin{array}{l}X^{\prime}=X\left(1-\frac{1}{2} Y\right) \\ Y^{\prime}=Y\left(-\frac{3}{4}+\frac{1}{4} X\right)\end{array}\right.$

Lotka-Volterra equations

Example 1 (cont.)

There are two fixed points of the following system, $\left(X^{*}, Y^{*}\right)=(0,0)$ and $(3,2)$:

$$
\left\{\begin{array}{l}
X^{\prime}=X\left(1-\frac{1}{2} Y\right) \\
Y^{\prime}=Y\left(-\frac{3}{4}+\frac{1}{4} X\right)
\end{array}\right.
$$

Lotka-Volterra equations

With logistic growth
Consider the following system: $\left\{\begin{array}{l}X^{\prime}=r X(1-X / M)-s X Y \\ Y^{\prime}=Y(-u+v X)\end{array}\right.$

Linearization and steady-state analysis

Example 2

Consider the following system: $\left\{\begin{array}{l}X^{\prime}=1.3 X(1-X)-.5 X Y \\ Y^{\prime}=Y(-.7+1.6 X)\end{array}\right.$

