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Lotka–Volterra equations

Example 1

Consider the following system:

{
X ′ = X (1 − 1

2
Y )

Y ′ = Y (− 3
4

+ 1
4
X )
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Lotka–Volterra equations

Example 1 (cont.)

There are two fixed points of the following system, (X∗,Y ∗) = (0, 0) and (3, 2):{
X ′ = X (1 − 1

2
Y )

Y ′ = Y (− 3
4

+ 1
4
X )
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Lotka–Volterra equations

With logistic growth

Consider the following system:

{
X ′ = rX (1 − X/M) − sXY

Y ′ = Y (−u + vX )
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Linearization and steady-state analysis

Example 2

Consider the following system:

{
X ′ = 1.3X (1 − X ) − .5XY

Y ′ = Y (−.7 + 1.6X )
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