- 1. For each of the following ideals, determine if it is prime and if it is maximal.
 - (a) The ideal I = (x) in the polynomial ring $R = \mathbb{Z}[x]$.
 - (b) The ideal I = (x) in the polynomial ring $R = \mathbb{R}[x]$.
 - (c) The ideal I = (x, y) in the multivariate polynomial ring $R = \mathbb{Z}[x, y]$.
 - (d) The ideal I = (x, y) in the multivariate polynomial ring $R = \mathbb{R}[x, y]$.
- 2. Let R be a commutative ring with 1.
 - (a) Prove that R is an integral domain if and only if 0 is a prime ideal.
 - (b) Prove that an ideal $P \subseteq R$ is prime if and only if R/P is an integral domain.
 - (c) Show that every maximal ideal is prime.
- 3. Recall that $a, b \in R$ are associates, denoted $a \sim b$, if $a \mid b$ and $b \mid a$. Show that $a \sim b$ if and only if a = bu for some unit $u \in R$.
- 4. Let R be a principal ideal domain (PID). A common multiple of $a, b \in R^*$ is an element m such that a|m and b|m. Moreover, m is a least common multiple (LCM) if m|n for any other common multiple n of a and b.
 - (a) Prove that any $a, b \in R^*$ have an LCM.
 - (b) Prove that an LCM of a and b is unique up to multiplication of associates, and can be characterized as a generator of the (principal) ideal $I := (a) \cap (b)$.
- 5. For any $x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the *norm* of x to be $N(x) = r^2 ms^2$.
 - (a) Show that N(xy) = N(x)N(y).
 - (b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_m$.
 - (c) Show that $u \in U(R_m)$ if and only if |N(u)| = 1.
 - (d) Show that $U(R_{-1}) = \{\pm 1, \pm i\}$, $U(R_{-3}) = \{\pm 1, \pm (1 \pm \sqrt{3})/2\}$, and $U(R_m) = \{\pm 1\}$ for all other negative square-free $m \in \mathbb{Z}$.
- 6. Let $R = \mathbb{Z}_{10}$ and $D = \{0, 2, 4, 6, 8\} \subset R$. Find the field of fractions of D in R.