Lecture 5.2: The orbit-stabilizer theorem

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Orbits, stabilizers, and fixed points

Suppose G acts on a set S. Pick a configuration $s \in S$. We can ask two questions about it:
(i) What other states (in S) are reachable from s ? (We call this the orbit of s.)
(ii) What group elements (in G) fix s ? (We call this the stabilizer of s.)

Definition

Suppose that G acts on a set S (on the right) via $\phi: G \rightarrow S$.
(i) The orbit of $s \in S$ is the set

$$
\operatorname{Orb}(s)=\{s . \phi(g) \mid g \in G\} .
$$

(ii) The stabilizer of s in G is

$$
\operatorname{Stab}(s)=\{g \in G \mid s \cdot \phi(g)=s\} .
$$

(iii) The fixed points of the action are the orbits of size 1 :

$$
\operatorname{Fix}(\phi)=\{s \in S \mid s . \phi(g)=s \text { for all } g \in G\} .
$$

Note that the orbits of ϕ are the connected components in the action diagram.

Orbits, stabilizers, and fixed points

Let's revisit our running example:

The orbits are the 3 connected components. There is only one fixed point of ϕ. The stabilizers are:

$$
\begin{array}{lll}
\operatorname{Stab}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=D_{4}, & \operatorname{Stab}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left\{e, r^{2}, r f, r^{3} f\right\}, & \operatorname{Stab}\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)=\{e, f\}, \\
& \operatorname{Stab}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left\{e, r^{2}, r f, r^{3} f\right\}, & \operatorname{Stab}\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=\left\{e, r^{2} f\right\}, \\
& \operatorname{Stab}\left(\begin{array}{|l|l}
1 & 1 \\
0 & 0
\end{array}\right)=\{e, f\}, \\
& \operatorname{Stab}\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left\{e, r^{2} f\right\} .
\end{array}
$$

Observations?

Orbits and stabilizers

Proposition

For any $s \in S$, the set $\operatorname{Stab}(s)$ is a subgroup of G.

Proof (outline)

To show $\operatorname{Stab}(s)$ is a group, we need to show three things:
(i) Contains the identity. That is, $s . \phi(e)=s$.
(ii) Inverses exist. That is, if $s . \phi(g)=s$, then $s . \phi\left(g^{-1}\right)=s$.
(iii) Closure. That is, if $s . \phi(g)=s$ and $s . \phi(h)=s$, then $s . \phi(g h)=s$.

You'll do this on the homework.

Remark

The kernel of the action ϕ is the set of all group elements that fix everything in S :

$$
\operatorname{Ker} \phi=\{g \in G \mid \phi(g)=e\}=\{g \in G \mid s . \phi(g)=s \text { for all } s \in S\} .
$$

Notice that

$$
\operatorname{Ker} \phi=\bigcap_{s \in S} \operatorname{Stab}(s)
$$

The Orbit-Stabilizer Theorem

The following result is another one of the central results of group theory.

Orbit-Stabilizer theorem

For any group action $\phi: G \rightarrow \operatorname{Perm}(S)$, and any $s \in S$,

$$
|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G| .
$$

Proof

Since $\operatorname{Stab}(s)<G$, Lagrange's theorem tells us that

Thus, it suffices to show that $|\operatorname{Orb}(s)|=[G: \operatorname{Stab}(s)]$.
Goal: Exhibit a bijection between elements of Orb(s), and right cosets of Stab(s).
That is, two elements in G send s to the same place iff they're in the same coset.

The Orbit-Stabilizer Theorem: $|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G|$
Proof (cont.)
Let's look at our previous example to get some intuition for why this should be true.
We are seeking a bijection between $\operatorname{Orb}(s)$, and the right cosets of $\operatorname{Stab}(s)$.
That is, two elements in G send s to the same place iff they're in the same coset.

Let $\left.s=\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$

$$
G=D_{4} \text { and } H=\langle f\rangle
$$

Then Stab(s) $=\langle f\rangle$.
Partition of D_{4} by the right cosets of H :

e	r	r^{2}	r^{3}
f	$f r$	$f r^{2}$	$f r^{3}$
H	$H r$	$H r^{2}$	$H r^{3}$

Note that $s . \phi(g)=s . \phi(k)$ iff g and k are in the same right coset of H in G.

The Orbit-Stabilizer Theorem: $|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G|$

Proof (cont.)

Throughout, let $H=\operatorname{Stab}(s)$.
" \Rightarrow " If two elements send s to the same place, then they are in the same coset.
Suppose $g, k \in G$ both send s to the same element of S. This means:

$$
\begin{array}{rll}
s \cdot \phi(g)=s \cdot \phi(k) & \Longrightarrow s . \phi(g) \phi(k)^{-1}=s & \\
& \Longrightarrow s . \phi(g) \phi\left(k^{-1}\right)=s & \\
& \Longrightarrow s . \phi\left(g k^{-1}\right)=s & \\
& \Longrightarrow g k^{-1} \in H & \\
& \Longrightarrow H g k^{-1}=H & \\
& \Longrightarrow H g=H k &
\end{array}
$$

" \Leftarrow " If two elements are in the same coset, then they send s to the same place.
Take two elements $g, k \in G$ in the same right coset of H. This means $H g=H k$.
This is the last line of the proof of the forward direction, above. We can change each \Longrightarrow into \Longleftrightarrow, and thus conclude that $s . \phi(g)=s . \phi(k)$.

If we have instead, a left group action, the proof carries through but using left cosets.

